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Abstract. In this paper, we present two different ways to extend the
classical multi-label chaining approach to handle imprecise probability
estimates. These estimates use convex sets of distributions (or credal
sets) in order to describe our uncertainty rather than a precise one. The
main reasons one could have for using such estimates are (1) to make
cautious predictions (or no decision at all) when a high uncertainty is
detected in the chaining and (2) to make better precise predictions by
avoiding biases caused in early decisions in the chaining. We perform
experiments on missing and noisy labels to investigate how accurate and
how precise these predictions are in both approaches. Our experimental
results indicate that while our approach produce relevant cautiousness
(i.e., forget predictions likely to be erroneous), results regarding possible
bias correction using a minimax approach are less encouraging, except
when high adversarial noise affect the labels, in which case our approach
outperform its precise counterpart.

Keywords: imprecise probabilities · multi-label · classifier chains

1 Introduction

Multi-label classification (MLC) is a generalization of traditional classification
(with a single label), as well as a special case of the multi-task learning. This
approach is increasingly required in different research fields, such as the clas-
sification of proteins in bioinformatics [15], text classification in information
retrieval [9], object recognition in computer vision [3], and so on.

A classical issue in multi-label learning techniques is how to integrate the
possible dependencies between labels while keeping the inference task tractable.
Indeed, while decomposition techniques [15,9] such as Binary relevance or Cal-
ibrated ranking allow to speed up both the learning and inference tasks, they
roughly ignore the label dependencies, while using a fully specified model such
as probabilistic chains require, at worst, to scan all possible predictions (that
grow exponentially in the number of labels). A popular technique to solve this
issue, at least for the inference task, is to use a chain model [13]: this consists
in using, incrementally, the predictions made on previous labels to help better
predict the relevance of a current label.

https://www.hds.utc.fr/
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To the best of our knowledge, there are only a few works of multi-label clas-
sification producing cautious predictions, such as the reject option [12], partial
predictions [7,1] or abstaining labels [11]. And none of these have studied this
issues in the chain model (or classifier-chains approach).

In this paper, we consider the problem of extending such an approach to the
imprecise probabilistic case, and propose two different ways to extend it, based
on the fact that some labels are too uncertain to be used in the chaining. The
first treats the uncertain labels in a robust way, exploring all possibles path in
order not to propagate early uncertain decisions, whereas the latter marginalizes
the probabilistic model over the uncertain labels, in other words, the uncertain
labels are not considered to infer the current label.

Section 2 introduces the notations which we will use for the multi-label set-
ting, and give the necessary reminders about making inferences with convex sets
of probabilities. In Section 3, we remind the classical classifier-chains approach
and then we present our extended approaches based on imprecise probabilities.

Finally, in Section 4, we perform a set of experiments on real data sets, which
are perturbed with missing and noisy labels, in order to investigate how precise
(when we exchange abstained labels for precise ones) and how cautious (when
we abstain on labels difficult to predict) is our approach.

2 Preliminares and basic remainders

In this section, we introduce the multilabel setting as well as basic notions needed
to deal with sets of probabilities.

2.1 Multi-label problem setting

In multi-label problem, an instance x of an input space X = Rp is no longer
associated with a single label mk of an output space K = {m1, . . . ,mm}, as in the
traditional classification problem, but with a subset of labels Λx ⊆ K often called
the set of relevant labels while its complement K\Λx is considered as irrelevant
for x. Let Y = {0, 1}m be a m-dimensional binary space and y = (y1, . . . , ym) ∈
Y be any element of Y such that yi = 1 if and only if mi ∈ Λx.

From a decision theoretic approach (DTA), the goal of the multi-label prob-
lem is the same as the usual classification problem. That means, given a prob-
ability distribution P̂ fitting a finite set of i.i.d. observations D = {(xi,yi)|i =
1, . . . , N} issued from a (true) theoretical probability distribution P : X ×Y →
[0, 1], DTA aims to minimize the risk of getting missclassification with respect
to a specified loss function L(·, ·):

RL(Y, h(X)) = arg min
h

EP̂ [L(Y,h(X))] . (1)

If L(·, ·) is defined instance-wise, this minimization can also be expressed as the
minimization of conditional expected risk of a given unlabeled instance x (cf. [6,
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eq. 3] and [8, eq. 2.21])

h(x) = arg min
y∈Y

EP̂Y |x
[L(Y,y)] = arg min

y∈Y

∑
y′∈Y

P̂ (Y =y′|X=x)L(y′,y) (2)

or, equivalently, by picking the maximal element obtained from a strict total
order relation1 � over Y × Y , where y1 � y2 (y1 is preferred to y2, or y2 is
dominated by y1) iff

EP̂
(
L(y2, ·)− L(y1, ·)

)
= EP̂

(
L(y2, ·)

)
− EP̂

(
L(y1, ·)

)
≥ 0. (3)

This amounts to saying that exchanging y2 for y1 would incur a positive expected
loss (which is not desirable).

In this paper, we are interested in making set-valued predictions when uncer-
tainty is too high (e.g. due to insufficient evidence to include or discard a relevant
label, see Example 1). In our case, the set-valued prediction will be described
as a partial binary vector y∗ ∈ Y ∗ where Y ∗ = {0, 1, ∗}m with ∗ standing for
abstention. For instance, a partial prediction y∗ = (∗, 1, 0) correspond to two
plausible binary vector solutions {(0, 1, 0), (1, 1, 0)} ⊆ Y .

In the sequel, we will denote by I subset of label indices (and by JjK =
{1, . . . , j} set of the first j integers). Given a prediction made in the j first
labels, we will denote by

1. (relevant labels) I j
R ⊆ JjK the indices of the labels predicted as relevant

among the j first, i.e. ∀i ∈ I j
R yi = 1,

2. (irrelevant labels) I j
I ⊆ JjK,I j

I ∩I j
R = ∅ the indices of the labels predicted

as irrelevant among the j first, i.e. ∀i ∈ I j
I yi = 0, and

3. (abstained labels) I j
A = JjK\(I j

R ∪ I j
I ) the indices of the labels on which

we abstained among the j first, i.e. ∀i ∈ I j
A yi = {0, 1} := ∗.

Besides, for the sake of simplicity and when it is not ambiguous, we will hence-
forth denote probabilities conditioned on previous labels by

P j
x(Yj =1) := Px(Yj =1|YI j−1= ŷI j−1), (4)

where ŷI j−1 is a (j−1)-dimensional vector that contains the previously inferred
precise and/or abstained values of labels having indices I j−1.

Example 1. We consider an output space of two labels K = {m1,m2}, a sin-
gle binary feature x1 and the table 1 with imprecise estimations of the joint
distribution P(X1, Y1, Y2).

Based on the probabilities of Table 1, we have that P̂0(y1 =0) = (y1 =0|x1 =
0) = 1 and that P̂0(y2 = 0) ∈ [0.4, 0.7], therefore not knowing whether P̂0(y2 =
0) > 0.5. This leads to propose as a prediction ŷ∗ = (0, ∗). On the contrary, the
imprecision on the right hand-side is such that P̂1(y2 =0)∈ [0.6, 0.8], leading to
the precise prediction ŷ∗ = (1, 0).

1 A complete, transitive, and asymmetric binary relation
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Table 1. Estimated joint probability distribution

x1 y1 y2 P̂ x1 y1 y2 P̂

0 0 0 [0.4,0.7] 1 0 0 0.00
0 0 1 [0.3,0.6] 1 0 1 0.00
0 1 0 0.00 1 1 0 [0.6,0.8]
0 1 1 0.00 1 1 1 [0.2,0.4]

Handling partial predictions requires a well founded strategy to do so, that
can also deal with the increased complexity of the prediction space |Y ∗| = 3m.
In this paper, we will describe it by means of a set of probabilities P instead of a
single probability distribution P, as usually done. To this end, in what follows, we
will introduce basic concepts about imprecise probabilities and decision making
with it (for further details [2]).

2.2 Notions about imprecise probabilities

Imprecise probabilities consist in representing our uncertainty by a convex set of
probability distributions PX [16,2] (i.e. a credal set [10]), defined over a space
X rather than by a precise probability measure PX [14].

Given such a set of distributions PX and any measurable event A ⊆X , we
can define the notions of lower and upper probabilities as:

PX(A) = inf
P∈PX

P (A) and PX(A) = sup
P∈PX

P (A) (5)

where PX(A) = PX(A) only when we have sufficient information about event
A. The lower probability is dual to the upper [2], in the sense that PX(A) =
1−PX(Ac) where Ac is the complement of A. Many authors [16,18] have argued
that when information is lacking or imprecise, considering credal sets as our
model of information better describes our actual uncertainty.

With such an approach, (1) the parametric or non-parametric estimation
usually becomes more complicated computationally since we estimate a set of
distributions P, and (2) the classical decision-making framework presented in
the Equation (2) needs to be extended. For the former issue, we will use a
well-known classifier that extends the NBC and computes the lower and upper
bound in polynomial time (see Section 4). For the latter issue, we will adapt the
following binary relevance approach, described in [7, Prop. 1]:

ŷi =


1 if Px(Yj =1) > 0.5,

0 if Px(Yj =1) < 0.5,

∗ if 0.5 ∈
[
Px(Yj =1), Px(Yj =1)

]
,

, (6)

to the case of mutli-label chaining.

3 Multilabel chaining with imprecise probabilities

We first recall the classical precise chaining and then propose two different strate-
gies to extend chaining to the imprecise probabilistic case.
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3.1 Precise probabilistic chaining

Classifier chains is a well-known approach exploiting dependencies among labels
by fitting at each step of the chain (see Figure 1) a new classifier model hj :
X × {0, 1}j−1 → {0, 1} predicting the relevance of the jth label. This classifier
combines the original input space attribute and all previous predictions in the
chain in order to create a new input space X ∗

j = X × {0, 1}j−1, k ∈ N>0. In
brief, we consider a chain h = (h1, . . . , hm) of binary classifiers resulting in the
full prediction ŷ obtained by solving each single classifier as follows

ŷ := hj(x) = arg max
y∈{0,1}

P j
x(Yj =y). (7)

The classical multi-label chaining then works as follows:

1. Random order of labels.-. We randomly pick an order between labels
I ∗ (possibly different from the original indices I = JmK) and assume that
the index are relabelled in an increasing order.

2. Prediction jth label.- For a given label yj , let us assume that we have

previously predicted labels of lower index y1, . . . , yj−1 and let I j−1
R ,I j−1

I ⊆
Jj−1K be set of indices of relevant and irrelevant labels, such that I j−1

R ∩
I j−1
I =∅. Then, the prediction of ŷj (or hj(x)) for a new instance x is

ŷj =

{
1 if Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0) ≥ 0.5

0 if Px(Yj = 0|YI j−1
R

= 1, YI j−1
I

= 0) < 0.5
(8)

Figure 1 summarizes the procedure presented above, as well as the obtained
predictions for a specific case (in bold red predicted labels and probabilities).

(a) Chaining with {Y1, Y2}

Y1 = 1

(1,1)Px(Y2 =1|Y1 =1)=0.6

(1, 0)Px(Y2=0|Y1=1)=0.4Px(Y1 = 1)=0.6

Y1 = 0

(0, 1)Px(Y2 =1|Y1 =0)=0.1

(0, 0)Px(Y2=0|Y1=0)=0.9

Px(Y1 = 0) = 0.4

(b) Chaining with {Y2, Y1}

Y2 = 1

(1, 1)Px(Y1 =1|Y2 =1)=0.9

(0, 1)Px(Y1=0|Y2=1)=0.1Px(Y2 = 1)=0.4

Y2 = 0

(1, 0)Px(Y1 =1|Y2 =0)=0.4

(0,0)Px(Y1=0|Y2=0)=0.6

Px(Y2 = 0) = 0.6

Fig. 1. Precise chaining

From the figure, it is clear that the ordering and the fact of choosing a single
branch at each step can have a significant impact on the final predictions, as in
our example it shifts from one prediction to its opposite. Intuitively, adding some
robustness and cautiousness in the process could halpe to avoid unwarranted
biases.
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In what follows, we propose two different extensions of precise chaining based
on imprecise probability estimates. By this, we mean that it is be based on binary
cautious classifiers, which consider a new output space Y ={0, 1, ∗}m from which
to pick the predictions.

3.2 Imprecise probabilistic chaining

When considering imprecise probabilities, the estimates P j
x(Yj =1) become im-

precise, that is, we now have [P̂ j
x](Yj = yj) := [P j

x(Yj = yj), P
j

x(Yj = yj)]. The
basic idea of using such estimates is that in the chaining, we should be cautious
when the classifier is unsure about which is the most probable prediction. In
this section, we describe two different strategies (or extensions) in a general way,
and we will apply them to the naive credal classifier (an extension of the Naive
Bayes classifier) in the next section.

Let us first formulate the generic procedure to calculate the probability bound
of jth label,

1. Random order of labels.- As before (in precise version), randomly pick
an order between labels, assuming again that index are relabelled in increas-
ing order.

2. Prediction jth label.- For a given label yj , let us assume we have made

possibly imprecise predictions for y1, . . . , yj−1 such that I j−1
A contains the

set of indices of labels on which we abstained {∗}, and hence, I j−1
R and

I j−1
I are the set of indices of relevant and irrelevant labels, such that I j−1

A ∪
I j−1
R ∪I j−1

I = I j−1. Then, we calculate [P j
x](Yj = 1) (we will show after

the possible ways to obtain this interval) in order to predict the label ŷj as

ŷj =


1 if P j

x(Yj = 1) > 0.5,

0 if P
j

x(Yj = 1) < 0.5,

∗ if 0.5 ∈
[
P j

x(Yj = 1), P
j

x(Yj = 1)
]
,

, (9)

where this last equation is a slight variation of Equation (6).

We then propose two different extensions of how to calculate [P j
x](Yj = 1) at

each inference step of the imprecise chaining.

Imprecise branching The first strategy treats unsure predictions in a robust
way, considering all possible branching in the chaining as soon as there is an

abstained label. Thus, the estimation of [P j
x(Yj = 1), P

j

x(Yj = 1)] (for Yj = 0,

it directly obtains as P j
x(Yj = 1) = 1− P j

x(Yj = 0), and similarly for the upper
bound) comes down to compute

P j
x(Yj = 1) = min

y∈{0,1}|IA|
Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0, YI j−1

A
= y),

P
j

x(Yj = 1) = max
y∈{0,1}|IA|

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0, YI j−1
A

= y).
(IB)
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That is to consider every possible replacements of variables for which we have
abstained so far. This corresponds to a very robust version of the chaining, where
every possible path is explored. It will therefore propagate imprecision along the
tree, and may produce quite imprecise evaluations, especially if we abstain on
the first labels.

Illustrations providing some intuition about this strategy can be seen in Fig-
ure 2b where we have abstained on labels (Y2, Y4) and we want to compute lower
and upper probability bounds of the label Y5 = 1.

(a) Evaluatin Y2=1 labels {Y1, Y2}

Y1 = 1

(1, 1)
Px(Y2 =1|Y1 =1)=0.6

(1, 0)
Px(Y2=0|Y1=1)=0.4[P̂x ](Y1=1)[0.45, 0.7]

Y1 = 0

(0, 1)
Px(Y2 =1|Y1 =0)=0.1

(0, 0)
Px(Y2=0|Y1=0)=0.9

[P̂x](
Y1=

0)[0
.3, 0

.55]

(b) Evaluating Y5 = 1 label with
{0, ∗, 1, ∗, ?}

0

1

1

1
1 (0, 1, 1, 1, 1)

0
1 (0, 1, 1, 0, 1)

0

1

1
1 (0, 0, 1, 1, 1)

0
1 (0, 0, 1, 0, 1)

Fig. 2. Imprecise branching strategy

In the Figure 2a, we will consider the previous example (see Figure 1) in
order to study in details how we should calculate probability bounds [P j

x(Yj =

1), P
j

x(Yj = 1)]. For the sake of simplicity, we assume that probabilities about Y2
are precise and that probability bounds of Y1 = 1 is [P̂ j

x](Y1 = 1) ∈ [0.45, 0.70].
This last result would correspond to the following tree where we would consider
the first two branches as possibles paths hence

P j
x(Y2 = 1) = min

y1∈{0,1}
Px(Y2 = 1|Y1 = y1) = min(0.1, 0.6) = 0.1, (10)

P
j

x(Y2 = 1) = max
y1∈{0,1}

Px(Y2 = 1|Y1 = y1) = max(0.1, 0.6) = 0.6, (11)

which means that in this case we would abstain on both labels.

Marginalization The second strategy simply ignores unsure predictions in the
chaining. Its interest is that it will not propagate imprecision in the tree. Thus,
we begin by presenting the general formulation (which will after lead to the for-
mulation without unsureness) which takes into account unsure predicted labels

conditionally, so the estimation of probability bounds [P j
x(Yj = 1), P

j

x(Yj = 1)]
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comes down to compute

P j
x(Yj = 1)=Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0, YI j−1

A
= {0, 1}|I

j−1
A |),

P
j

x(Yj = 1)=Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0, YI j−1
A

= {0, 1}|I
j−1
A |),

(MAR)

Which comes down to calculate

P j
x(Yj = 1) = min

P∈P∗
Px(Yj = 1|YI j−1

R
= 1, YI j−1

I
= 0),

P
j

x(Yj = 1) = max
P∈P∗

Px(Yj = 1|YI j−1
R

= 1, YI j−1
I

= 0).
(MAR*)

where P∗ is simply the set of joint probability distributions described by the
imprecise probabilistic tree (we refer to de Cooman and Herman [5] for a detailed
analysis of those). In general, such an optimisation can be computationally quite
intensive, but remains easy in the case of the Naive credal classifier, thanks to its
independence assumption (a full detail of those computation is not given here,
due to space constraints).

Note that, once any of the two strategies has been applied, we can either
keep the prediction as it is, producing an incomplete vector where label YIA

become imprecise, or we can consider precise estimations of labels j ∈ IA by
considering a minimax robust strategy, i.e., picking ŷj = arg maxy∈{0,1} P

j
x(Yj =

y) to replace the label Yj by the corresponding prediction.

4 Experiments

In this section, we perform experiments on 3 data sets issued from the MULAN
repository2 (c.f. Table 2), following a 10×10 cross-validation procedure (at every
jth-fold, we proceed randomly to shuffle the set of labels).

Table 2. Multi-label data sets summary

Data set #Features #Labels #Instances #Cardinality #Density

emotions 72 6 593 1.90 0.31
scene 294 6 2407 1.07 0.18
yeast 103 14 2417 4.23 0.30

4.1 Evaluation and setting

The usual metrics used in multi-label problems are not adapted at all when we
infer set-valued predictions. Thus, we consider appropriate to use the incorrect-
ness (IC) and completeness (CP) metrics proposed in [7, §4.1], as follows

IC(ŷ,y) =
1

|Q|
∑
ŷi∈Q

1(ŷi 6=yi) and CP (ŷ,y) =
|Q|
m
,

2 http://mulan.sourceforge.net/datasets.html

http://mulan.sourceforge.net/datasets.html
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where ŷ is the partial binary prediction and Q denote the set of non-abstained
labels. When predicting complete vectors, then CP=1 and IC equals the Ham-
ming loss and when predicting the empty vector, i.e. all labels ŷi = ∗, then
CP=0 and by convention IC=0.

Imprecise classifier As was mentioned earlier, and for practical purposes, we
chose to use the so-called näıve credal classifier (NCC)[18]3 in order to compute
the probability bounds. NCC is an extension of the classical naive Bayes classifier
(NBC) on a set of probability distributions. That means, NCC preserves the
assumption of feature independence given the class of NBC, and relies on the
Imprecise Dirichlet model (IDM) [17] to estimate class-conditional probabilities,
whose imprecision level is controlled through a hyper-parameter s ∈ R. The

higher s, the wider the intervals [P j
x(Yj = 1), P

j

x(Yj = 1)] will be. For s = 0, we
retrieve the classical NBC with precise predictions, and for high enough values
of s>>>0, the NCC model will make vacuous predictions. Thus, we restrict the
values of the hyper-parameter of the imprecision to s ∈ {2.0, 2.5, 3.0, 3.5, 4.0, 4.5}
(starting from s=2 as advised in [17]).

Missing and Noise labels In this paper, we consider three different settings in
order to compare the quality of performance of both approaches. In all settings,
we apply to each label Yj,i (the jth label of the ith instance) the following
changes with a chance of either 40% or 80%:

1. Missing (miss) in this case, the label becomes Yj,i = ∗, and is not included
in the training samples of the conditional mmodels.

2. Noise in this case, we consider two different type of changes:

(a) Reversing (rev) we reverse the current value of the label. In other
words, if Yj,i = 1 it becomes Yj,i = 0 (and similarly Yj,i = 0→ Yj,i = 1).
This setting can be seen as an adversarial one, where the adversary can
swtich a number of labels,

(b) Flipping (flip) in contrast to previous case, for each chosen label Yj,i,
we proceed to throw a Bernoulli trial with probability β := P (Yj,i = 1),
i.e. Yj,i ∼ Ber(β), with β ∈ {0.2, 0.8}.

4.2 Results

The average performances of the minimax approach for (IB) and (MAR) strate-
gies obtained in terms of the IC measure are shown in Tables 3.a and 3.b respec-
tively, with an imprecise level4 s= 2, applied to our imprecise approach (ICC)
(resp. precise approach (CC)).

3 For further details of NCC, we refer to Zaffalon’s work [18] and also [4].
4 We could have optimised on s, but it seemed unfair compared to the precise approach

that does not benefit from this hyper-parameter.
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Table 3. Average (%) of the IC on missing and noise settings for s=2 and β=0.8

(a) Imprecise Branching

Data set %
Missing Reversing Flipping
CC ICC CC ICC CC ICC

Emotion
0.0 21.87 22.70 — — — —
0.4 21.82 23.02 32.02 32.75 27.71 27.74
0.8 21.61 23.17 74.64 73.58 39.51 34.80

Scene
0.0 16.03 16.94 — — — —
0.4 15.74 17.21 30.38 31.54 28.22 28.70
0.8 14.07 18.38 74.92 73.68 38.33 34.91

Yeast
0.0 29.59 33.00 — — — —
0.4 28.96 34.54 40.50 41.85 36.45 38.34
0.8 26.17 40.10 67.49 64.58 53.15 50.55

(b) Marginalization

Data set %
Missing Reversing Flipping
CC ICC CC ICC CC ICC

Emotion
0.0 21.76 22.83 — — — —
0.4 21.84 23.24 31.71 32.59 27.75 27.79
0.8 21.64 24.35 74.74 73.72 40.04 35.29

Scene
0.0 16.03 16.98 — — — —
0.4 15.73 17.31 30.62 31.73 28.20 28.74
0.8 14.14 18.77 74.92 73.67 38.37 34.85

Yeast
0.0 29.67 33.69 — — — —
0.4 28.86 34.80 40.50 41.84 36.45 38.19
0.8 26.17 42.29 67.54 64.73 53.17 50.59

The obtained results with unchanged labels are similar. In the case of the
missing labels, it seems that the minimax strategy and the addition of impre-
cision actually impairs the results, which is surprising and worthy of further
investigation. Interestingly though, our strategy seems to be more robust to the
presence of high noise in the data, as we systematically outperform the precise
cahining when 80% of the labels are affected.

In Figure 4.2, we provide the evolution of IC and CP in average (%), with a
set-up of β = 0.8 for the flipping setting. The results displayed are those that we
expect, since when s increases, the incorrectness (IC) decreases as we forget more
and more (as completeness or CP decreases). We can note that as the data set
becomes worse (80% noise), completeness decrease in a quicker way, and could
maybe used as an indicator of the data quality.

Fig. 3. Evolution of the incorrectness and completeness for the imprecise branching
strategy and Emotion dataset.
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All those results however only provide a proof of concept for our method-
ology, and are also obtained with a classifier which, through its independence



A first glance at multi-label chaining using imprecise probabilities 11

assumption, makes imprecise chaining computationally efficient but limits the
benefits of using a chaining approach.

5 Conclusions

In this paper, we have introduced initial ideas to adapt the classical chaining
algorithms of multi-label problems to the case of imprecise or set-valued proba-
bilities. Such an idea is indeed promising to tamper the usual biases of picking
a particular branch in the chain.

However, much remains to be done, as how to come up with general but
efficient optimisation methods to solve Equations (IB) and (MAR). Indeed, while
the Naive credal classifier makes them easy to solve thanks to its assumptions,
the same assumptions may be the reason of our mitigated results. It seems
therefore essential, in future works, to investigate other classifiers as well as to
solve optimisation issues.
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