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Classification - Setting

A classic classification problem is composed of :
l Data training D = {xi ,yi }N

i=0 such as :
m (Input) xi ∈X are regressors or features (often xi ∈Rp).
m (Output) yi ∈K is a response category variable, with

K = { m1, ...,mK }
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Classification - Setting

A classic classification problem is composed of :
l Data training D = {xi ,yi }N

i=0 such as :
m (Input) xi ∈X are regressors or features (often xi ∈Rp).
m (Output) yi ∈K is a response category variable, with

K = { m1, ...,mK }

Objective
Given training data D = {xi ,yi }N

i=0, we need to learn a classification
rule : φ :X →Y in order to predict a new observation φ(x∗)
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Classification - Outline (Example)

Getting Training
Data
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Classification - Outline (Example)

Getting Training
Data

→

Learning a
classification rule :

φ :X →Y

→

Predict class for
new instances :

ŷ∗ :=φ(x∗|X ,y)

But :
l How can we learn the “classification rule” (model) from

training data?
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Decision Making Discriminant Analysis

Decision Making in Statistic

l In statistic : classification rule often seen as a decision-making
problem under risk of getting missclassification.

R(y ,ϕ(X ))= argmin
ϕ(X)∈K

EX×Y [L (y ,ϕ(X ))] (1)

l Under 1/0 loss function L , minimizing R equivalent to :

φ(x∗|X ,y) := argmax
mk∈K

P(y = mk |X = x∗) (2)

l Where :
1. The predicted class ŷ∗ =φ(x∗|X ,y) is the most probable

(equation (2)).
2. This last equation (2) is also known as Bayes classifier [1, pp.

21].
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Decision Making in Statistic

Definition (Preference ordering [5, pp. 47])
With general loss L (·, ·), ma is preferred to mb, denoted by ma Â mb,
if and only if :

EP [L (·,ma)|x∗]< EP [L (·,mb)|x∗]

In the particular case where L (·, ·) is the 0/1 loss function we get :

ma º mb ⇐⇒ P(y = ma|X = x∗)
P(y = mb|X = x∗)

> 1

where P(Y = ma|X = x∗) is the class probability. We then take the
maximal element of the complete order º, i.e.

miK º miK−1 º .... º mi1 ⇐⇒ P(y = miK |x∗)≥ .... ≥P(y = mi1 |x∗)
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(Precise) Discriminant Analysis

Applying Baye’s rules to P(Y = ma|X = x∗) :

P(y = mk |X = x∗)= P(X = x∗|y = mk)P(y = mk)∑
ml∈K P(X = x∗|y = ml)P(y = ml)

where πk :=PY=yk such as
K∑
j
πj = 1 and Gk :=PX |Y=mk ∼N (µk ,Σk)

A frequentist point estimation :

π̂k = nk

N

µ̂k = 1
nk

nk∑
i=1

xi ,k

Σ̂k = 1
N −nk

nk∑
i=1

(xi ,k −xk)(xi ,k −xk)
t
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Decision Making in Imprecise Probabilities

Definition (Partial Ordering by Maximality Criterion)
Let P a set of probabilities, then ma is preferred to mb if the cost of
exchanging ma with mb have a positive lower expectation :

ma ÂM mb ⇐⇒ inf
P∈P

EP [L (·,mb)−L (·,ma)|x∗]> 0

if L (·, ·) is 1/0 loss function, so :

ma ÂM mb ⇐⇒ inf
P∈P

P(y = ma|X = x∗)
P(y = mb|X = x∗)

> 1
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Decision Making in Imprecise Probabilities

By applying Bayes theorem on P(y = ma|X = x∗), so :

ma ÂM mb ⇐⇒ inf
PX |y∈P1,Py∈P2

P(x∗|y = ma)P(y = ma)

P(x∗|y = mb)P(y = mb)
> 1

The resulting set of cautions decisions is :

YM = {ma ∈K | 6 ∃mb :ma ÂM mb}

For instance, if K = {ma,mb,mc}, we can have :

ŶM = {ma ÂM mb,mc ÂM mb,ma Â≺M mc} = {ma,mc}
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Classification Imprecise Classification Future work Conclusions Références
Imprecise Decision Imprecise Linear discriminant analysis

Imprecise Linear Discriminant Analysis (ILDA)

Objective :

Making imprecise the parameter mean µk of each Gaussian
distribution family Gk :=PX |Y=mk ∼N (µk , Σ̂)

Assumptions :

l Covariances precisely estimated and Homoscedasticity, i.e.
Σk =Σ :

Σ̂= 1
(N −K )

K∑
k=1

nk∑
i=1

(xi ,k −xk )(xi ,k −xk )
t

l Prior probabilities precisely estimated : π̂k = nk
N
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Decision Making in ILDA

We take the previously maximality criterion and assumptions, so :

ma ÂM mb ⇐⇒ inf
PX |y∈P1,Py∈P2

P(x∗|y = ma)P(y = ma)

P(x∗|y = mb)P(y = mb)
> 1 (3)

⇐⇒ inf
PX |y∈P1

P(x∗|y = ya) π̂a

P(x∗|y = yb) π̂b
> 1

Given Gk :=PX |Y=mk ∼N (µk , Σ̂) are independent :

⇐⇒ infP∈Ga P(x∗|y = ya) π̂a

supP∈Gb
P(x∗|y = yb) π̂b

> 1
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Decision Making in ILDA (cont...)

Then, the problem reduces to two optimisation problems :

P(x∗|y = ya)= inf
P∈Ga

P(x∗|y = ya) (4)

P(x∗|y = yb)= sup
P∈Gb

P(x∗|y = yb) (5)

As PX |Y=mk ∼N (µk , Σ̂) and Σb = Σ̂, so :

P(x∗|y = ya) ⇐⇒ µ
a
= inf

P∈Ga
− 1

2
(x∗−µa)

T Σ̂−1(x∗−µa) (6)

P(x∗|y = yb) ⇐⇒ µb = sup
P∈Gb

− 1
2
(x∗−µb)

T Σ̂−1(x∗−µb) (7)
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Imprecise Linear Discriminant Analysis

Now, the question is : How could we make imprecise the unknown
mean parameter µk ?

l Confidence intervals.
l Neighbors around µk .
l P-Box
l Robust Bayesian
l ....

We would use robust Bayesian with conjugate distributions for
exponential families
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Imprecise Linear Discriminant Analysis
Bayesian inference context

In classic Bayesian inference is based on two components :
l The distribution of the observed data conditional on its

unknown parameters (or Likelihood).
l A belief information of expert (or prior distribution).

In order to build procedures of posterior inference on the unknown
parameter, in this case µk .

p(µk |X ,y = mk)∝ p(X |µk ,y = mk)p(µk) (8)

Where p(µk) ∈Pµk could belong a set of prior distributions Pµk

11th Workshop on Principles and Methods of Statistical Inference with Interval Probability 16
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Imprecise Linear Discriminant Analysis

We propose to use a set of prior distributions based on near-ignorance
approach of [6, eq. 16] :

M
µ

0 =
{
µ ∈Rd

∣∣∣p(µ|m)∝ exp(`Tµ), m = [`1, ...,`d ]
T ∈ L

}
(9)

where m is a hyper-parameter which belong to convex space L :

L= {
` ∈Rd : `i ∈ [−ci ,ci ],ci > 0, i = {1, ...,d}

}
[6] Alessio BENAVOLI et Marco ZAFFALON. “Prior near ignorance for inferences in the k-parameter

exponential family”. In : Statistics 49.5 (2015), p. 1104-1140

Remark
M

µ

0 satisfy the four minimal properties that model of prior
ignorance require : invariance, near-ignorance, learning and
convergence (more details [6]).
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Imprecise Linear Discriminant Analysis

By applying Baye’s rule (8) (or equation [6, eq 17]), we get a set of
posterior distribution :

M
µk
nk

=
{
µk

∣∣xnk ,m ∝N

(
`+nkxnk

nk
,

1
nk
Σ̂

)
,

}
(10)

where xk = 1
nk

∑nk
i=1 xi ,k and ` ∈ L, and :

inf
M

µk
nk

E[µk |xnk ,`]= E[µk |xnk ,m]= −`+nkxnk

n
(11)

sup
M

µk
nk

E[µk |xnk ,`]= E[µk |xnk ,m]= `+nkxnk

nk
(12)
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Imprecise Linear Discriminant Analysis

The two last estimations describe a convex set around µ :

Gk =

µ̂k ∈Rd

∣∣∣∣∣µ̂i ,k ∈
[−ci +nk x i ,nk

nk
,
ci +nk x i ,nk

nk

]
,

∀i = {1, ...,d}


That we use as constraint in on our two optimisation problems.

P(x∗|y = ma) ⇐⇒ µ̂
a
= argmax

µ̂a∈Ga

1
2
µ̂T

a Σ̂
−1µ̂a +x∗T Σ̂−1µ̂a (NPQB)

P(x∗|y = mb) ⇐⇒ µ̂b = argmin
µ̂b∈Gb

1
2
µ̂T

b Σ̂
−1µ̂b +x∗T Σ̂−1µ̂b (PQB)

First problem non-convex → solved through B&B method.
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Example
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Example (cont..)
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Another Example with 3 class
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Experiments

Average utility-discounted accuracy measure of [4]

u(y , ŶM)=
{

0 if y ∉ ŶM
α

|ŶM | −
β

|ŶM | else

Where u65 with (α,β)= (1.6,0.6) and u80 with (α,β)= (2.2,1.2).

# Name # Obs. # Regr. # Classes
a iris 150 4 3
b seeds 210 7 3
c glass 214 9 6

DLA
IDLA Inference

time# u65 u80
a 0.961 0.969 0.975 0.56 sec.
b 0.959 0.959 0.962 1.50 sec.
c 0.594 0.589 0.642 8.66 sec
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Imprecise Quadratic discriminant analysis

(1) Release homoscedasticity assumption, i.e. Σk 6=Σ

µ̂
a
= argmax

1
2
µ̂T

a Σ̂
−1
k µ̂a −x∗T Σ̂−1

k µ̂a

s.t .
−cj +nx j ,n

n
≤ µ̂j ,a ≤

ci +nx j ,n

n
∀j = {1, ...,d}

(PQB)

l Making imprecise P(y = ma)= [P(y = ma),P(y = ma)] and to
solve :

inf
PX |y∈P1,Py∈P2

P(x∗|y = ma)P(y = ma)

P(x∗|y = mb)P(y = mb)
> 1
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Imprecise Quadratic discriminant analysis
Space Convex Matrices S+

(2) Make imprecise the covariance matrice (i.e. Σk or Σ) by using a
prior Wishart distribution :

Σk = inf
Ω∈Sn+

E[Σk |X ,y = mk ,τ0,Ω] (13)

Σk = inf
Ω∈Sn+

Ω+ (n−1)Σ̂MLE
k

n+τ0
(14)

where Σ̂MLE
k is the maximal likelihood estimator of covariance

matrice Σk and Sn+ is a convex space of families of positive
semi-definite positive matrices.
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Imprecise Quadratic discriminant analysis
Space Convex Matrices S+

In [2], we can find a good intuitions for minimize the last optimization
problem, where Φε is a perturbation in the neighbourhood of Ω0
prior parameter value, and || · ||F is Frobenius norm.

argmin
Ω0∈Sn+

Σ= Ω0 + (n−1)Σ̂e

n+τ0

s.t. ΣºXi , ∀Xi ∈Sn
+, i = {1, ...,m}

Sn
+ = {Ω0 | ||Ω0 −Φε||F ¹Ω0 ¹ ||Ω0 +Φε||F }
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Imprecise Quadratic discriminant analysis
Space Convex of eigenvalues or eigenvectors

(3) Imprecise eigenvalues and eigenvectors of Σk .

We’ll propose to use Ω̂ estimation of [3, §3], i.e Ω̂= tr(ΣMLE
k )

d , and
then applying it the spectral decomposition :

Ω̂+ (n−1)Σ̂MLE
k

n+τ0
⇐⇒

tr(
∑d

j=1λjujut
j )

d(n+τ0)
I+ n−1

n+τ0

d∑
j=1

λjujut
j (15)

d∑
j=1

λj

[
tr(ujut

j )

d
I+ (n−1)ujut

j

]
(16)
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Imprecise Quadratic discriminant analysis
Space Convex of eigenvalues or eigenvectors

In [3], it has been proven that eigenvalues have estimations ei-
ther biased high (overestimated) or biased low (underestimated) for
small and noisy samples.
Then, we could assume the variability of direction is “correctly” es-
timated (i.e eigenvectors)

λ=argmax
λ∈Sn+

d∑
j=1

λj

[
tr(ujut

j )

d
I+ (n−1)ujut

j

]

s.t Sn
+ =

{
Σ̂=

d∑
j=1

λjvv t

∣∣∣∣∣ Σ¹ Σ̂¹Σ
}

11th Workshop on Principles and Methods of Statistical Inference with Interval Probability 29



Classification Imprecise Classification Future work Conclusions Références

Overview

l Classification
m Decision Making
m Discriminant Analysis

l Imprecise Classification
m Imprecise Decision
m Imprecise Linear discriminant analysis

l Future work

l Conclusions

11th Workshop on Principles and Methods of Statistical Inference with Interval Probability 30



Classification Imprecise Classification Future work Conclusions Références

Conclusions
Imprecise Analysis Discriminant Classification

l Increasing in imprecision on the estimators has allowed us to
be more cautious in doubt and to improve the prediction of
classification [7].

l More experiments with all imprecise components.
l Creation of new imprecise statistic models for a sensibility

analysis and a more (cautious) robust prediction.
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