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“Er zijn mannen die op een dag vechten en goed zijn.
Er zijn anderen die een jaar vechten en beter zijn.
Er zijn mensen die vele jaren vechten, en ze zijn erg goed.
Maar er zijn mensen die hun hele leven vechten: dat zijn de essenties.”

“Il y a des hommes qui luttent un jour et ils sont bons,
d’autres luttent un an et ils sont meilleurs,
il y a ceux qui luttent pendant de nombreuses années et ils sont très bons,
mais il y a ceux qui luttent toute leur vie et ceux-là sont les indispensables.”

“There are men that fight one day and are good,
others fight one year and they’re better,
and there are those who fight many years and are very good,
but there are the ones who fight their whole lives and those are the indispensable one”

“Hay hombres que luchan un dı́a y son buenos.
Hay otros que luchan un año y son mejores.
Hay quienes luchan muchos años y son muy buenos.
Pero hay los que luchan toda la vida. Esos son los imprescindibles.”

Bertolt Brecht



iv



Remerciements
C’est avec une profonde tristesse que je m’apprête à écrire les dernières lignes
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me souviens : Sébastien Bernis, Xavier Bry, Benoı̂te de Saporta, Servajean Maximilien,
Louise Baschet ... et si j’ai oublié quelqu’un.e, je tiens à m’en excuser :)....



vii



viii



UNIVERSITY OF TECHNOLOGY OF COMPIÈGNE

Abstract
CID (Connaissances, Incertitudes, Données)

Team Heudiasyc Laboratory

Doctor of Philosophy

Distributionally robust, skeptical inferences in supervised classification using
imprecise probabilities

by Yonatan Carlos Carranza Alarcón

Decision makers are often faced with making single hard decisions, without hav-
ing any knowledge of the amount of uncertainties contained in them, and taking
the risk of making damaging, if not dramatic, mistakes. In such situations, where
the uncertainty is higher due to imperfect information, it may be useful to provide
set-valued but more reliable decisions.

This works thus focuses on making distributionally robust, skeptical inferences
(or decisions) in supervised classification problems using imprecise probabilities. By
distributionally robust, we mean that we consider a set of possible probability dis-
tributions, i.e. imprecise probabilities, and by skeptical we understand that we con-
sider as valid only those inferences that are true for every distribution within this
set. Specifically, we focus on extending the Gaussian discriminant analysis and multi-
label classification approaches to the imprecise probabilistic setting.

Regarding to Gaussian discriminant analysis, we extend it by proposing a new
imprecise classifier, considering the imprecision as part of its basic axioms, based
on robust Bayesian analysis and near-ignorance priors. By including an imprecise
component in the model, our proposal highlights those hard instances on which the
precise model makes mistakes in order to provide cautious decisions in the form of
set-valued class, instead.

Regarding to multi-label classification, we first focus on reducing the time com-
plexity of making a cautious decision over its output space of exponential size by
providing theoretical justifications and efficient algorithms applied to the Hamming
loss. Relaxing the assumption of independence on labels, we obtain partial decisions,
i.e. not classifying at all over some labels, which generalize the binary relevance ap-
proach by using imprecise marginal distributions. Secondly, we extend the classifier-
chains approach by proposing two different strategies to handle imprecise probability
estimates, and a new dynamic, context-dependent label ordering which dynamically
selects the labels with low uncertainty as the chain moves forwards.

Keyworkds: imprecise probabilities, supervised classification, multi-label classifica-
tion, multiclass classification, uncertainty
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`0/1(y, ŷ) Zero-one loss function
`H Hamming loss function
`Fβ F-measure loss function

Discriminant Analysis

nk Number of observations of label mk
(xi,k,yi,k)

nk
i=1 =

{
(x1,k,y1,k), . . . , (xnk,k,ynk,k)

}
Observations of label mk.

xk =
1
nk

nk∑
i=1
xi,k Empirical mean of label mk

σ̂
j
mk = 1

nk−1

nk∑
i=1

(xji,k − x
j
k)
2,∀j ∈ {1, . . . ,p} Empirical variance of label mk
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Chapter 1
Introduction

“Begin at the beginning”, the King said
gravely, “and go on till you come to the
end: then stop.”

— Lewis Carroll, Alice in
Wonderland

Contents

1.1 Statistical learning theory . . . . . . . . . . . . . . . . . . . . 2

1.2 Supervised learning approach . . . . . . . . . . . . . . . . . . 4

1.3 Subjective probability approach . . . . . . . . . . . . . . . . . 7

1.4 A self-learning guide to the reader . . . . . . . . . . . . . . . 9

1.5 Research works . . . . . . . . . . . . . . . . . . . . . . . . . . 10

The (imprecise) cautious1 classification task2 is a relatively new phe-
nomenon in machine learning, dating back at least to the late nineties,
with the referred work of [Zaffalon, 1999]. This approach extends the Walley (1996) early

illustrated an e.g. of
cautious inference in a
randomized clinical
trial, in which a new
patient may be
classified as life or
death or ineligible
according to the applied
treatment.

classical one by allowing us to describe our uncertainty through a set of
probability distributions rather than a single one. Besides, it also aims at
highlighting those hard cases for which information is insufficient to iso-
late a single reliable solution (or prediction), proposing then a subset of
possible solutions.

Thus, this research work focuses on extending the classical-
classification approach to the imprecise probabilistic setting [De Finetti,
1937; Walley, 1991; Troffaes et al., 2014], in order to detect and palliate
those unreliable single decisions made by it and to propose instead
potential set-valued decisions including all those decisions that are not
dominated for every probability distribution within the set of probability
distributions. We also investigate the robustness of these set-valued

1 Cautious and imprecise are used throughout this thesis interchangeably.
2 Throughout this thesis, we will use “supervised learning” term to refer only to classifica-

tion task.



2 1.1 statistical learning theory

decisions made by this new extension, or imprecise supervised-learning
approach, when faced with noisy and missing information (be it on the
input or output component), showing that including the imprecision
in our model produces a gain in the decision-making process. Such
set-valued decisions can be useful in sensitive applications where it can
be disastrous to decide wrongly.

In this chapter, we shall introduce and discuss the benefits and draw-
backs of the precise and imprecise approaches in general, and then delve
into more specific concepts in other chapters3. At the end of the chapter,
precisely in the two last sections 1.4 and 1.5, I summarize my research
work performed during the thesis and provide a self-learning guide allow-
ing readers to focus on topics more related to their interest.

1.1 statistical learning theory

Any learning process is based on knowledge acquisition, be it implicit,
explicit, or both. That is how it happens in humans and not too differently
in computers, yet certainly with a higher focus on a specific task, in which
it learns to generalize repetitive and similar patterns of a well-framed and
well-specific experiment, e.g. classification of images.

In the theory of statistical estimation , this process was deeply studiedLaplace (1773) and
Gauss (1810)

previously work about
the uncertainty on the
parameter of a model,

so its estimate.

in the twenties and thirties by [Fisher, 1925; Neyman, 1937; Wald, 1939], in-
troducing a theoretical background that matured in the 50’s with concepts
of statistical decision theory [Wald, 1950] (inspired by developments in
game theory [Neumann et al., 1947]). During the 60-70’s V. N. Vapnik and
A. Ya. Chervonenkis introduced the statistical learning theory (a.k.a. pattern
recognition learning theory or inductive learning principle) which can be
stated in terms of decision-making, and it was widely disseminated during
the nineties and became popular in the machine learning community.

In formal terms, it aims at estimating or learning, on the basis of em-
pirical evidence (or data), an approximation of the supervisor’s response
through a function ϕ ∈ F (a.k.a. learning machine) of a given functionalSupervisor is the one

that labels or identifies
a response y ∈ K for

every input x ∈X ,
where X and K are
the input and output

spaces.

space. To do that, [Vapnik et al., 1974] introduced the risk minimization in-
ductive principle, which aims to measure the discrepancy or loss incurred
between the supervisor’s response (or true response) and the learning ma-
chine’s response ϕ (predicting response) by computing the expected value
of a specified loss function `(·, ·) : K ×K → R penalising every bad
decision, as follows

R(ϕ) = EX×Y [`(Y,ϕ))] =
∫
X ×K

`(y,ϕ(x))dP(x,y), (1.1)

3 Someone with knowledge in supervised learning approach can directly go to Section 1.3.
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where P is a unknown theoretical probability measure on a measurable
space X ×K (from which are drawn independently the values of (x,y),
under identical distributional conditions, i.e. i.i.d) and E is the expected
value of `(·, ·) understood as an abstract Lebesgue integral with respect to Wald (1950) named `

as rule to make a
decision.

the measure P.
Therefore the “optimal” (or potential approximation) solution ϕ̂ can be

obtained by minimizing R(ϕ) over F

R(ϕ̂) = inf
ϕ∈F

R(ϕ). (1.2)

Under canonical loss functions, such as quadratic and zero-one loss,
and assuming that `(·, ·) is defined instance-wise, we can obtain explicit The quadratic and

zero-one loss function
are of classic use in the
statistic for its
mathematical
tractability, introduced
by Gauss (1810) and
Neyman-Pearson,
respectively.

reductions of Equation (1.2) (c.f. Table 1.1). Besides, if we knew P we
could easily deduce the lowest possible mean squared error and missclas-
sification probability of the desirable risk function. Unfortunately, and for
obvious reasons, these last are not implementable since P is unknown.

Regression problem Classification problem

Risk minimizer
∫

X ×K (y−ϕ(x))2dP
∫

X

∑
y∈K 1(y 6=ϕ(x)) dP

Explicit solutions ϕ̂(x) = E[Y|X = x] ϕ̂(x)=arg min
ϕ(x)∈K

E[1(Y 6=ϕ(x)) ]

Table 1.1: Explicit reductions of the risk minimization [Friedman et al.,
2001, Eq. 2.13, 2.23].

This means that in most cases, it is impossible to obtain an explicit
solution to Equation (1.1), and in practice we use the empirical risk mini-
mization (ERM) principle as follows

R(ϕ) =
1

N

N∑
i=1

`(yi,ϕ(xi)) (1.3)

which has strong theoretical justifications [Vapnik et al., 1982] such as the
uniform convergence towards the theoretical risk of the Equation (1.1).
Thus, the “optimal” model is the one minimizing the Equation (1.3).

Even if this principle is theoretically seducing to find an “optimal”
solution, it has some shortcomings in practice, such as overfitting [Vapnik,
1995], ill-posedness [Hadamard, 1902], sensitivity to data (non-continuity),
need for a larger sample size without any guarantee of getting a small risk
error, an input dimensionality X not larger than the empirical sample size
(i.e. N >>> p), and so on. Furthermore, even if our assumptions about F
and ` were right, estimating a precise “optimal” solution ϕ̂ would be like
having a very idealistic thought since the empirical evidence is seldom a
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truly, sufficient i.i.d. representative of the population of interest. In which
case, it may be better to perform a distributionally robust estimation (or
inference), for instance using a neighborhood around ϕ̂ [Kuhn et al., 2019;
Chen et al., 2018].

In the same vein, using a subjective probability approach [De Finetti,
1937] which describes our ignorance or partial knowledge by means of
sets of probabilities, we can mitigate several shortcomings of the ERM
principle. For instance, [Mantas et al., 2014] proposes a robust classifier
sensitive to noise data (corrupted data).

Since the ERM may lead to poor results when empirical evidence is
limited or of poor quality (partial, noisy, . . . ), this research work focuses
on proposing robust cautious classification models on structured outputs
(e.g. multi-label and multi-class problems) that are sensitive to data quan-
tity and quality. In what follows, we introduce preliminares about the
classical classification based on the ERM principle, and leave the cautious
classification for Chapter 2.

1.2 supervised learning approach

In statistics, the classification task was quietly introduced at the beginning
of the 20th century — roughly at the same time as the theory of statistical
estimation and hypothesis testing— aiming to minimize the risk of mak-
ing a wrong decision. Predictive inference4 in a probabilistic modelling
paradigm (PMP)5 can be divided as a two-step process6

1. Learning model.- to make assumptions about the parametric form
of the unknown probability measure P and then estimating its pa-
rameters on the basis of empirical data (here called training data set),
and

2. Inference or prediction.- to construct an optimal decision rule“Decision rule” was
one of the first names

assigned to loss
function, by Wald.

from the estimated probability measure and a given missclassifica-
tion cost.

An illustration of the previous setting can be seen at the top of the Fig-
ure 1.1. We can also note that in the case of a cautious classification task

4 Predictive inference is an approach to statistical inference that emphasizes the prediction
of future observations (or unobserved observations) of a given population on the basis of
past observations of the same population [Salmon, 1957; De Finetti, 1970; Aitchison et al.,
1975; Hinkley, 1979; Clarke et al., 2018].

5 We prefer to calling it PMP at the frequentist or Bayesian statistical decisional paradigm
as a way of distinguishing on other non-probabilistic approaches (like score methods).

6 In a Bayesian predictive inference, we should introduce a intermediary step, i.e. making
assumptions on the a priori probability distribution, and then use the posterior distribu-
tion estimated instead in the inference step [Berger, 1985, §2.4.4].
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Statistical

Population

D

T

Classical

classification

Cautious

classification

Inference or

Prediction

Learning

Model

(xi, yi)

(xi, ?)

ma

mc

md

mb

me

ma

mc

mb

md

me

ŷ=ma

Ŷ={ma, mc}

Precise model

P : X ×Θ→ K

Credal model

P :={P |P :X ×Θ→K }

Figure 1.1: Statistical learning in imprecise and precise approach.

(at the bottom) the learning and decision-making process are quite simi-
lar, except for the fact that we shall use concepts extending those of the
classical setting, i.e., sets of probabilities.

In machine learning (ML), and to the best of our knowledge, this ab-
stract and generic process has been given the name of Decision-Theoretic
approach (DTA) by [Lewis, 1995], or more recently with the name of Popu-
lation Utility (PU) by [Dembczyński et al., 2017], which consist firstly to fit
a probabilistic model at training time (learning model step) and then use it
in the inference time (inference step). Another paradigm, not too far away
from the scheme presented in Figure 1.1, is the empirical utility maximaza-
tion (EUM) approach [Ye et al., 2012; Dembczyński et al., 2017] that learns
a score function in the learning step instead and then selects a threshold for
the score function to minimize a loss function in the inference step.

Without loss of generality, the practitioners in ML name the scheme of
the Figure 1.1 as the inductive principle (or ERP), if and only if the metric
of evaluation (or loss function) is decomposable on a set of i.i.d. test
samples [Joachims, 2005, §2]. This will be the case here, so we will use
the ERP principle.

Let D = {(xi,yi)|i = 1, . . . ,N} be a training data set (empirical evidence)
issued from X ×K , such that xi ∈ X are regressors or features (input
space) and y ∈ K is the response variable or class (output space). We
denote nk the number of observations that belong to the label7 mk, and
so N =

∑K
k=1 nk. Thus, the goal of classical classification is to build a

predictive model ϕ : X → K that predicts a label mk ∈ K given a new
unlabelled instance (x, ·) /∈ D .

By contrast with PMP, but not quite different, the ERM principle –in the
classification setting– develops these steps as follow; learning step consists
in determining the optimal model ϕ̂ ∈ F which partitions the underlying

7 Label and class are used throughout this thesis interchangeably when these do not cause
ambiguity, e.g. in the case of multi-label problem.
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abstract (vector) space, where lives labelled observations (xi,yi)Ni=1 (i.e.
training data) generated from an unknown joint probability distribution
PX,Y , into as many disjoint subsets as there are classes (see figure 1.2 for
an illustration).

This function space F can be represented; e.g. by a set of finite set of
hyperplanes as it is the case in the model of support vector machine (SVM),
or by a family of probability distributions with unknown parameters, forIn a PM, we can obtain

these estimates e.g. by
using the maximum
likelihood estimation

principle.

instance
F := {ϕ := P|P ∼ N(µ,Σ), (µ,Σ) ∈ (R, R2)}. (1.4)

In this research work, we focus on this last kind of functional spaces.

(a) Getting Training Data (b) Learning model φ (c) Prediction of unlabeled instance
x

Figure 1.2: Learning model steps. Figure (a) shows the initial training data,
from which are induced the boundaries defining the decision function (b),
then used to perform the predictions (c).

After getting an “optimal” model ϕ̂ , we must decide what is the labelUnder a set of hyper-
parameters, the set of
admissible “optimal”

models must decide
which one best classifies
unlabelled instances on

a hold-out set of test
data

of a new unlabelled instance (x, ·). This latter decision step can be handled
by minimising the risk of getting misclassifications (c.f. Equation (1.1)),
and can formally be defined as follows.

Definition 1 (Risk minimizing [Friedman et al., 2001, §2.4]) Given a gen-
eral loss function `(·, ·), the optimal model is defined as the one minimizing the
average loss of getting missclassification.

ϕ̂ := argminϕ(X)∈F EX×Y [`(Y,ϕ(X))] (1.5)

If the loss function is defined instance-wise, then, Equation (1.5) can also be
expressed as the minimization of conditional expectation [Friedman et al., 2001,
eq. 2.21]:

ϕ̂ := arg min
y∈K

EY|X [`(Y,y)] (1.6)

Classical accuracy corresponds to a zero-one loss function, where all miss-
classifications are penalised identically, i.e. `0/1(y, ŷ) is equal to 1 if y and
ŷ are different and 0 otherwise. Therefore, given `0/1, we can reformu-
late the risk minimization as the well-known Bayes classifier, which would
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choose the learning model maximizing the conditional probability (a.k.a.
maximum a posterior (MAP) probability, also see the Table 1.1) given a
new unlabeled instance x:

ϕ̂(x) = argmaxmk∈K P(Y = mk|X = x) (1.7)

Hence, the main task is to estimate the conditional distribution PY|X, from
which can be obtained the optimal decision.

This last classifier model is called precise since it performs pointwise
predictions (or precise estimations) in the form of single class labels, even
in extreme cases, regardless of the available information we have about an
instance. The reliability of this precise prediction (or single decision) may
depend heavily on prior beliefs (e.g. assumptions made by data analysts,
such as asymptotically unbiased estimators) and the nature of training
data sets (e.g. in small amounts [Kitchin et al., 2015; Dalton et al., 2015]
and/or with high degree of uncertainty8), both will be referred as imperfect
information9.

One of our motivations is precisely to investigate means to make ro-
bust and cautious predictions. Thus, in the next chapter, we shall present
an extension of this decision-making framework resulting sometimes in
partial decisions in form of set-valued solutions (see at the bottom of the
Figure 1.1) using imprecise probabilities.

1.3 subjective probability approach

De Finetti was one of precursors in the subjective probability (SP) ap- There have been other
mentions of the
subjective probability
by [Bertrand, 1889] in
pp. 27 and [Borel,
1924] in pp. 332-333.

proach with his famous work entitled “La prévision: ses lois logiques,
ses sources subjectives”. In the later years, Walley adopted this approach
and extended de Finetti’s point of view as follows

...de Finetti assumes that for each event of interest, there is some
betting rate that you regard as fair, in the sense that you are willing
to accept either side of a bet on the event at that rate. This fair betting
rate is your personal probability for the event. More generally, we
take your lower probability to be the maximum rate at which you
are prepared to bet on the event, and your upper probability to
be the minimum rate at which you are prepared to bet against the
event. It is not irrational for you to assess an upper probability that
is strict1y greater than your lower probability. Indeed, you ought
to do so when you have little information on which to base your

8 Uncertainty can be due to lack of knowledge or to the natural variability in the observed
data [Roeser et al., 2012, ch.2] (or a.k.a. epistemic and aleatoric uncertainty [Senge et al.,
2014]), and it can lead us to biased estimations and high variance models [Braga-Neto
et al., 2004].

9 Imperfect information is here used as a synonym for limited information or/and lack of
knowledge or prior beliefs.
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assessments. In that case we say that your beliefs about the event are
indeterminate, and that (for you) the event has imprecise probability.

Statistical reasoning with imprecise Probabilities, pp. 3

Walley thus coined the term imprecise probability (IP) in his published
book [Walley, 1991] that was widely disseminated during the nineties and
21st century [Augustin et al., 2014; Troffaes et al., 2014].

1.3.1 Imprecise probabilities

Imprecise probability (IP) theory often (and will in our case) consists in rep-
resenting our uncertainty (or lack of evidence in the empirical data) by a
convex set PX of probability distributions (i.e. a credal set [Levi, 1983]),
defined over a space X rather than by a precise probability measure PX
[Taylor, 1973]. As they include precise distributions as special cases, such
convex sets of distributions provide richer, more expressive models of un-
certainty than the latter, and therefore allow us to better describe uncer-
tainty originating from imperfect data. When using them to make deci-
sion, they naturally allow one to produce cautious set-valued decisions in
case of high uncertainty.

Furthermore, whatever the uncertainty model P chosen, it will always
converge to a precise probability estimate P so long as additional evidence
is supplied (e.g. in Figure 2.1, the polytope composed from six extreme
points may converge for instance to its centroid). That is why, in some field
where it is very difficult to obtain more data (e.g. biology, clinical trials,
and so on), one could consider that it should be mandatory to describe our
uncertainty by means of a distributionally robust framework such as IP.

Given such a set of distributions PX and any measurable event A ⊆X ,
we can define the notions of lower and upper probabilities as:

PX(A) = inf
P∈PX

P(A) and PX(A) = sup
P∈PX

P(A) (1.8)

where PX(A) = PX(A) only when we have sufficient information about
event A. The lower probability is dual to the upper [Augustin et al., 2014],
in the sense that PX(A) = 1 − PX(A

c) where Ac is the complement of
A. Many authors [Walley, 1991; Zaffalon, 2002] have argued that when
information is lacking or imprecise, considering credal sets as our model
of information better describes our actual uncertainty.

With such an approach, (1) the estimation of parameters in a paramet-
ric or non-parametric approach usually becomes more complicated com-
putationally, since we consider a set of distributions P instead of a single
probability distribution P, and (2) the classical decision-making framework
presented in the Equation (1.6) needs to be extended to handle sets of dis-
tributions P .
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For the first issue of model estimation, we propose, in Part I, to rely
on previous works providing efficient generalized Bayesian inference
(GBI) [Dempster, 1968] methods for exponential families (which include
Gaussian distributions), that we will present in Section 3.1.2, and in Part II,
to use a well-known classifier that extends the Naive Bayes classifier and
that can compute the lower and upper probabilities in polynomial time.

For the latter issue of decision making, we will present and discuss,
with some practical examples, several possible extensions in Chapter 2.

1.4 a self-learning guide to the reader

In order to turn reading into a coherent story, I have decided to organize
this dissertation in two connected but distinct topics. To do so, I decided
to do a flow diagram, in Figure 1.3, in order for the reader to find his/her
way according to his/her preferences.

Chapter-1
Introduction

Chapter-2
Decision making under
uncertainty applied to
classification problems

Chapter-3
Imprecise Gaussian

Discriminant Analysis

Chapter-4
Multi-label classi-
fication problem

Chapter-5
Distributionally ro-
bust, skeptical bi-
nary inferences

Chapter-6
Multi-label chaining using

naive credal classifier

Figure 1.3: Flow diagram: Logical structure of the dissertation.

Firstly, in the Chapter 2, we present the theoretical background about
decision making under uncertainty using imprecise probabilities that is
necessary to understand the other chapters.

In Part I of this thesis, i.e. the Chapter 3, we present our imprecise
Gaussian discriminant classifier using some existing ideas [Zaffalon, 2001;
Benavoli et al., 2014].
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Part II of this thesis starts by introducing, in the Chapter 4, some back-
ground about the multi-label problem in the classical approach. In Chap-
ter 5, we discuss the problem of making cautious inferences in multi-label
problems, demonstrating that efficient algorithms can be used for various
common settings. Finally, in the Chapter 6, we present some theoretical
and experimental results in multi-label chaining using as base classifier the
well-known Naive Credal classifier.

1.5 research works

The research that led to this dissertation has produced six different papers
up to now, of which some of them has been published, or are currently
being reviewed, or just submitted, or in preparation. Like in the previous
flow diagram 1.3, we present papers according to every topic, in what
follows:

1. Imprecise classification using Gaussian distributions

• Carranza Alarcón et al. (2019). “Imprecise Gaussian Discrim-
inant Classification”. In: Proceedings of the Eleventh Interna-
tional Symposium on Imprecise Probabilities: Theories and Ap-
plications.

• Carranza Alarcón et al. (2020). “Imprecise Gaussian Discrimi-
nant Classification”. (reviewed)

In the context of cautious multi-class classification, our first paper
proposes a new imprecise classifier using a set of Gaussian distri-
butions, followed by its extended version in journal format with ex-
tended experiments and theoretical results.

2. Multi-label problem under imprecise probabilities

• Carranza Alarcón et al. (2020). “Distributionally robust, skep-
tical binary inferences in multi-label problems”. (submitted)

In the context of multi-label classification, we firstly propose theoreti-
cal procedures: (1) to reduce the complexity time of its inference step
when we consider the Hamming loss case, and (2) to generalize the
classical binary relevance by using imprecise marginal distributions.

Second, we propose two different general strategies to adapt the
classical multi-label chaining problem to the imprecise probabilistic
setting.

• Carranza Alarcón et al. (2020). “A first glance at multi-label
chaining using imprecise probabilities”. In: Workshop on Un-
certainty in Machine Learning.
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This latter has led to an extended paper by adapting the last two
strategies to the use of the naive credal classifier and proposing a
new dynamic, context-dependent label ordering. As a result of these
extensions, we obtained new theoretical contributions presented in
Chapter 6.

• Carranza Alarcón et al. (2020). “Multi-label chaining using
naive credal classifier”. (in preparation)

In addition to all this, I also contributed to a conference paper in the
context of the label ranking problem, as a side collaboration, that proposes
an efficient way to make partial predictions using imprecise probabilities.

• Carranza Alarcón et al. (2020). “Cautious Label-Wise Ranking with
Constraint Satisfaction”. In: Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems.

Finally, and aiming at a scientific diffusion of my research in France,
some of the published conference papers were presented in French na-
tional conferences.

• Carranza Alarcón et al. (2018). “Analyse Discriminante Imprécise
basée sur l’inférence Bayésienne robuste”. In: 27èmes Rencontres
francophones sur la Logique Floue et ses Applications.

• Carranza Alarcón et al. (2020). “Apprentissage de rangements pru-
dent avec satisfaction de contraintes”. In: 29èmes Rencontres franco-
phones sur la Logique Floue et ses Applications.
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Chapter 2
Decision making under uncer-

tainty applied to classifica-

tion problems

“The intermediate theories do not content themselves with the proper
formulation of the statistical theory of estimation, neither do they ac-
cept the indispensability of a priori probabilities. For the attainment
of any strong conclusion, they are, in my opinion, hopeless trials of
eclecticism, intended to avoid particular faults or distasteful points
of both alternatives without endeavoring to amalgamate their prin-
ciples in a superior synthesis.”

— Bruno De Finetti, in Recent suggestions for the reconciliation
of theories of probability

Contents

2.1 Decision making under uncertainty . . . . . . . . . . . . . . 14

2.2 Classification with imprecise probabilities . . . . . . . . . . . 26

2.3 Naive credal classifier . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Often, the decision maker can be faced with unreliable or hard situa-
tions where making a single decision may lead to damaging, if not dra-
matic, mistakes. The hardness of such situations can for instance be due to
the lack of sufficient evidence or information (i.e. uncertainty in data). In
such cases of imperfect information, it may be useful to provide set-valued,
but more reliable decisions, especially for sensitive applications (e.g. med-
ical diagnosis, control systems, cancer screening, etc.) where we cannot
afford to make mistakes.

Hence, in this chapter, we firstly introduce some necessary theoretical
background about how to make partial decisions under uncertainty using
imprecise probabilities. This latter shall specifically be examined in the
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context of the multiclass classification problem. Then, we shall introduce
the imprecise classification approach, which is mainly an extension of the
classical classification using imprecise probabilities and decision making
under uncertainty. Finally, we will introduce the well-known imprecise
classifier named Naive credal classifier (NCC).

2.1 decision making under uncertainty

When we talk about making a decision under uncertainty, it is always
related to the fact that we do not know the state of nature, which is not
under the control of the decision maker. This uncertainty may be described
by unknown factors, such as missing or noisy information, where we mean
by noisy that information has been provided incorrectly without bad faith.

In classical-statistic analysis, the uncertainty is often measured through
a probability measure (or distribution), which can in certain cases not be
enough to detect the indecision or imprecision. Thus, in this section, we
consider that our uncertainty is modelled as a set of probability distribu-
tions.

To turn reading into a pleasing experience and not give just abstract
theoretical definitions. I decided to illustrate all the different criteria of
decision making presented below using the following example.

Example 1 Let us consider a hard real problem in which a naı̈ve graduating
student needs to make a risky decision about his/her future.

To do so, let us consider a classification problem composed of four labels (a.k.a.
actions or decisions available to the decision-maker).

K∗ = {ma, mb, mc, md}, (2.1)

which have the following descriptions

ma : to understand laws of the universe,

mb : to start a job in computer science,

mc : to co-fund an innovative startup in her/his garage,

md : to pursue a PhD thesis.

As our purpose is to illustrate the benefits of making a decision under uncertainty
using a set of probability distributions PY|x instead of a single probability dis-
tribution PY |x, we then consider the probability estimates described in Table 2.1.

An illustration of the precise probability and credal set estimates is shown in
Figure 2.1. On the left side, we can firstly see a probability 3-simplex (or tetrahe-
dron), in which every vertex corner corresponds to a probability distribution PY |x
such that the probability of a specific event mk ∈ K∗ is Px(Y = mk) = 1.
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P̂x(Y = ma) P̂x(Y = mb) P̂x(Y = mc) P̂x(Y = md)
P̂Y |x 0.225 0.222 0.225 0.328

P̂Y|x

P̂1 0.282 0.209 0.194 0.315

P̂2 0.208 0.281 0.196 0.315

P̂3 0.188 0.229 0.268 0.315

P̂4 0.237 0.186 0.262 0.315

P̂5 0.186 0.186 0.186 0.442

P̂6 0.243 0.243 0.243 0.271

Table 2.1: Conditional probability estimates of credal set and precise distri-
bution.

∆ :=

PY |x :=(Px(Y=ma), . . . ,Px(Y=md))∈R4

∣∣∣∣∣∣

n∑
y∈K∗

Px(Y=y)=1

 (2.2)

Inside the tetrahedron, we have our convex credal set (or convex polytope)
P̂Y|x ⊂ ∆ represented by six extreme points, in which each probability distribu-
tion estimation is illustrated on the right side of Figure 2.1. Besides, the precise
distribution estimation P̂Y |x is located in the center of inertia of the polytope.

P̂x({ma}) P̂x({mb})

P̂x({mc})

P̂x({md})
P̂1

P̂2

P̂3

P̂4

P̂5

P̂6

P̂x

Figure 2.1: Polytope of set of probabilities

Finally, as commonly used in the context of decision making, let us consider a
classical cost matrix (c.f. Table 2.2a) obtained from the `0/1 function and a custom In the context of IP,

every row is often
considered as a gamble
function, i.e. 1− `0/1
are betting profits.

cost matrix (c.f. Table 2.2b) defined according to the risk level of every decision, in
other words, the naı̈ve graduating student estimated costs.

In Example 1, we provide two cost matrices (a.k.a loss matrix in classi-
fication problems) with the purpose of exemplifying:

1. that the use of an uncertainty model P does not imply that we
always obtain a set-valued predictions, it may depend on the loss
function as well as the empirical evidence given to estimate P̂ , and



16 2.1.1 decision making under precise probabilities

`(·, ·) ma mb mc md
ma 0.0 1.0 1.0 1.0
mb 1.0 0.0 1.0 1.0
mc 1.0 1.0 0.0 1.0
md 1.0 1.0 1.0 0.0

(a) `0/1 classic

`(·, ·) ma mb mc md
ma 0.00 0.73 0.56 0.04

mb 0.55 0.00 0.19 0.78

mc 0.09 0.76 0.00 0.18

md 0.20 0.88 0.27 0.00
(b) `∗ contextual

Table 2.2: Loss values incurred

2. situations where one makes partial predictions in the form of set-
valued labels in case of hard situations where a single decision is not
safe also depends on the loss function and the credal set estimate P̂ .

For theoretical developments of next two subsections, we will assume
that we know the form of the convex set of distributions PY|x and the
precise probability distribution PY|x.

Furthermore, all different calculations given in examples of the next
section, i.e. the lower, upper and precise expected values, have been be
performed using the improb-redux software1, so it can be reproduced to the
reader’s liking.

2.1.1 Decision making under precise probabilities

The criterion of making-decision introduced in the Definition 1 can also be
represented as a strict total order relation2 �x over K ×K , meaning that
it can be posed as a problem of inferring preferences between labels, as
follows:

Definition 2 (Precise ordering [Berger, 1985, pp. 47]) Given a general loss
function `(·, ·) and a conditional probability distribution PY|x, ma is preferred to
mb, denoted by ma �x mb, if and only if:

EPY|x
[`(·, ma)|x] < EPY|x

[`(·, mb)|x] (2.3)

Definition 2 tells us that exchanging mb for ma would incur a positive
expected loss, due to the fact that expectation loss of mb is greater than
ma, therefore ma should be preferred to mb for a given new unlabelled
instance x. In the particular case where we use the loss function `0/1, it is
easy to prove that:

ma �x mb ⇐⇒ Px(Y = ma) > Px(Y = mb) (2.4)

1 Implementation is available in https://github.com/mcmtroffaes/improb-redux
2 A complete, transitive, and asymmetric relation.

https://github.com/mcmtroffaes/improb-redux
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where Px(Y = ma) := P(Y = ma|X = x) is the unknown conditional proba-
bility of label ma given a new unlabeled instance x.

Therefore, given a set of labels K and a conditional probability estimate
P̂, we can then establish a strict total order by making pairwise compar-
isons (see figure 2.2) as follows:

miK �x miK−1 �x · · · �x mi1 ⇐⇒ P̂x(Y = miK) > · · · > P̂x(Y = mi1). (2.5)

We can then pick out one of the undominated labels, i.e., one with maximal
probability.

In the case where Equation (1.7) returns multiple elements, which is
unlikely in practice but not impossible, they can be considered as indiffer-
ent and chosen randomly without affecting the theoretical performance or
risk of the classifier. It should be noted that, whatever the quantity of data
used to induce the model or the specific new instance x we consider (that
may come from a poorly populated region), we will always get (up to indif-
ference) a unique undominated label. In contrast, the IP approach where
we consider sets PY|X of probabilities may, depending on the criterion-of-
decision choice, result in strict partial orders having multiple undominated
and incomparable labels.

Example 2 Making use of the probability estimates of the conditional distribution
P̂Y |x given in the Table 2.1, we can compute the strict total order between its labels
K∗, which is md �x ma ∼x mc �x mb and can be illustrated graphically in the
Figure 2.2

md ma mc mb

Figure 2.2: Graph of the strict total order on labels K∗

{md} being the maximal label dominating other ones, it is the predicted one.
This means that the most accurate decision, and also smart, is to “to pursue a
PhD thesis” (of course in Compiègne).

As shown by Equation (2.5) and Example 2, usual statistics and proba-
bility model uncertainty with a unique distribution P, canonically and ax-
iomatically ending up in a unique undominated label as a decision. While
it is possible to implement decision rules providing set-valued predictions
in such settings [Ha, 1997], several authors [Walley, 1991; Dempster, 1968]
have argued that a single distribution cannot always faithfully represent
lack of information.

So, if we describe our model uncertainty by a convex set of distribu-
tions P —which may be a better choice— this implies, at first glance, that
we should naively verify Equation (2.3) for every probability distribution
P ∈P , which is indeed one of the criteria we shall study next.
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2.1.2 Decision making under imprecise probabilities

Within IP theories, we can find different methods extending the decision
criterion given in Definition 2 (for further details [Walley, 1991; Augustin
et al., 2014; Troffaes, 2007, §3.9, §8]). To classify a new instance x, we will
introduce five criteria that have strong theoretical justifications and often
remain applicable in practice [Zaffalon, 2002; Yang et al., 2017].

Such criteria can be considered more or less conservatives, in the sense
of cautiousness, meaning that some will provide more imprecise decisions
than others. The most common being used are : (1) Maximality, (2) IntervalNote that there does

exist other extensions
in the state-of-the-art,
e.g. [Destercke, 2010].

dominance, (3) E-admissibility, (4) Γ -minimin, (5) Γ -maximin.
Before starting to define such criteria, let us first introduce some defini-

tions. Given a loss function `, we will denote by

EP [`(y, ·)] := max
P∈P

EP [`(y, ·)] and EP [`(y, ·)] := min
P∈P

EP [`(y, ·)] (2.6)

the upper and lower expected values of this loss under uncertainty P .
They respectively provide an assessment of the worst-case and best-case
situations.

We will use two different notations to distinguish the set-valued and
single prediction(s), as follows

ŷ : a single prediction, where ŷ ∈ K , and

Ŷ : a set-valued prediction, where Ŷ ⊆ K .

Besides, we will also use the superscript (the subscript) to denote the
type of criterion used (resp. the loss function used), e.g. ŷΓmax

`0/1
is a single

prediction using the Γ -minimax criterion and the `0/1 function.
Moreover, in the case of performing pairwise comparisons over labels

that may result in a strict partial order, we will use the following notations

mx �∗ my which denote that mx is preferred to my
mx �≺∗ my which denote that mx and my are incomparable.

Note that in this thesis, we do not deal with the indifference relation, de-
noted here as mx ∼ my, meaning that mx and my are equally desirables.

2.1.2.1 Γ -minimax and Γ -minimin criteria

We begin by introducing two criteria close of the classical one, since these
choose the best- or worst-case solution amongst the existing ones [Berger,
1985, §5].

Definition 3 (Γ -Minimax) Γ -Minimax consists in replacing the expected value
of Equation (1.6) by its upper expectation
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ŷΓmax
`,P = arg min

y∈K

EP [`(y, ·)] . (2.7)

It amounts to returning the best worst-case prediction (i.e. a pessimistic
attitude), since it consists in minimizing the worst possible expected loss.

Definition 4 (Γ -Minimin) Γ -Minimin, in contrast, consists in replacing the
expected value of Equation (1.6) by its lower expectation

ŷ
Γmin
`,P = arg min

y∈K

EP [`(y, ·)] . (2.8)

It amounts to returning the best best-case prediction (i.e. an optimistic
attitude), since it consists in choosing the prediction with the smallest
lower expectation.

In the particular case where we consider the loss function `0/1 and a
credal set PY|x, it is easy to prove that

ŷΓmax
`0/1,PY|x

= arg max
y∈K

Px(Y = y) and ŷ
Γmin
`0/1,PY|x

= arg max
y∈K

Px(Y = y).

(2.9)
In the case of a small output space K , these last optimizations may be

easy to solve (especially when the credal set has a finite number of extreme
points). Otherwise, they may be hard to solve.

Example 3 Making use of the credal set P̂Y|x, we can easily obtain the upper and
lower expectation with respect to matrix loss values of Table 2.2a

y ma mb mc md
EP̂Y|x

[
`0/1(y, ·)

]
0.718 0.719 0.732 0.558

EP̂Y|x

[
`0/1(y, ·)

]
0.814 0.814 0.814 0.729

applying Equations (2.7) and (2.8), we obtain

ŷ
Γmin
`0/1,P̂Y|x

= md and ŷΓmax
`0/1,P̂Y|x

= md

which perfectly matches with the precise prediction.
However, if the matrix loss is the one of Table 2.2b

y ma mb mc md
EP̂Y|x

[`∗(y, ·)] 0.197 0.312 0.234 0.186

EP̂Y|x
[`∗(y, ·)] 0.257 0.397 0.283 0.263

we obtain a different result in the Γ -minimax criterion

ŷ
Γmin
`∗,P̂Y|x

= md and ŷΓmax
`∗,P̂Y|x

= ma.
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The last example illustrates perfectly the fact that, regardless of how
large is our uncertainty model P , we may obtain an accurate decision that
perfectly matches that of its precise counterpart, albeit it does not imply
that this one is the ground-truth one.

In contrast to the `0/1 matrix, if we consider the `∗ matrix customized to
our preferences, we obtain a best worst-case prediction not far away of the
best best-case prediction, since preferences ma and md are strongly related
with the science and research.

These criteria are not conservatives (or cautious), since they always gen-
erate single predictions, and hence, do not necessarily reflect our lack of
information. In other words, they do not represent our indecision [Au-
gustin et al., 2014, p. 193], or imprecision, as they will output a single
prediction whatever our uncertainty is. Thus, in what follows, we shall in-
troduce the first of three criteria which produce a set of possible solutions
(including incomparable decisions if necessary).

2.1.2.2 Maximality criterion

The maximality criterion is the most natural extension of Equation (2.3) as
it amounts to comparing decisions pairwisely in a robust way, meaning
that every preference of Equation (2.3) holds only if it holds for every
model (i.e. every precise distribution in the credal set), as follows.

Definition 5 (Maximality [Walley, 1991, §3.9.5]) Under maximality criterion
ma is preferred to mb iff the cost of exchanging ma with mb have a positive lower
expectation

ma �P
` mb ⇐⇒ EP [`(·, mb) − `(·, ma)] > 0. (2.10)

The prediction is then non-dominated elements of the strict partial order �P
`

ŶM
`,P =

{
ma ∈ K

∣∣∣6 ∃mb ∈ Y : mb �P
` ma

}
(2.11)

Since �P
` is a strict partial order, ŶM

`,P may result in a set of multi-
ple, incomparable elements (i.e. maximal non-dominated elements), in
which case the prediction becomes imprecise due to high uncertainty in
the model.

Computing ŶM
`,P can be a computationally demanding task with at

most a quadratic time complexity on output space O(|K |2). So, it may
make the inference step critical when considering combinatorial spaces,
such as multi-label problems in which getting Equation (5.2) may require
at worst to perform |Y |(|Y | − 1)/2 comparisons, where |Y | = 2m is the
output space with m labels, ending up with a complexity of O(22

m
) that

quickly becomes untractable even for small values of m.

Remark 1 It should be noted that the computational time mentioned previously,
namely O(|K |2), may still be reduced using two different strategies:
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1. removing dominated elements already verified (cf.[Augustin et al., 2014,
algo. 16.4]), and

2. verifying if maximal elements obtained from the precise probabilistic setting
(i.e. Equation (2.5)) are non-dominated (c.f Section 3.6)

However, in the worst-case scenario, in which all elements are non-dominated, the
time complexity remains the same (i.e quadratic time).

Furthermore, if we consider the loss function `0/1 and credal set PY|x,
Equation (2.10) can be reduced to

ma �
PY|x

`0/1
mb ⇐⇒ inf

PY|x∈PY|x

[
Px(Y = ma) − Px(Y = mb)

]
> 0 (2.12)

Equation (2.12) amounts to requiring Equation (2.4) to be true for all pos-
sible probability distributions in P .

Example 4 Applying Equation (2.10) to the credal set P̂Y|x, we can calculate the
lower expectation of each pairwise comparison of labels of the output space K ∗

(so 12 comparisons) as follows

y ma mb mc md
EP̂Y|x

[
`0/1(y, ·) − `0/1(ma, ·)

]
· −0.07 −0.08 −0.26

EP̂Y|x

[
`0/1(y, ·) − `0/1(mb, ·)

]
−0.07 · −0.08 −0.26

EP̂Y|x

[
`0/1(y, ·) − `0/1(mc, ·)

]
−0.09 −0.09 · −0.26

EP̂Y|x

[
`0/1(y, ·) − `0/1(md, ·)

]
0.03 0.03 0.03 ·

Following them, we can then produce the partial ordering BM
`0/1

BM
`0/1

=

{
md �

P̂Y|x

`0/1
ma, md �

P̂Y|x

`0/1
mb, md �

P̂Y|x

`0/1
mc

}
(2.13)

where ŶM
`0/1,P̂Y|x

= {md} is the predicted set obtained from set BM
`0/1

of compar-

isons by the criterion of maximality (Figure 2.3a).
In contrast, if we consider the cost matrix of `∗, it produces the below lower

expectations

y ma mb mc md
EP̂Y|x

[`∗(y, ·) − `∗(ma, ·)] · 0.34 0.02 −0.02
EP̂Y|x

[`∗(y, ·) − `∗(mb, ·)] −0.46 · −0.41 −0.48

EP̂Y|x
[`∗(y, ·) − `∗(mc, ·)] −0.09 0.32 · −0.07

EP̂Y|x
[`∗(y, ·) − `∗(md, ·)] −0.03 0.32 −0.01 ·

such that the partial ordering BM
`∗ (Figure 2.3b) obtained is
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BM
`∗ =

ma �
P̂Y|x

`∗ mb, ma �
P̂Y|x

`∗ mc, mc �
P̂Y|x

`∗ mb,

md �
P̂Y|x

`∗ mb, md �≺
P̂Y|x

`∗ ma

 , (2.14)

where ŶM
`∗,P̂Y|x

= {md, ma} is the predicted set obtained from set BM
`∗

md

mb

ma

mc

(a) BM
`0/1

md

ma

mb

mc

(b) BM
`∗

Figure 2.3: Graphs of partial order of Example 4.

That means, regardless of the `0/1 or `∗ function, the decision {ma, md} of the
subject will always be inclined to pursue a quest of knowledge.

Note that, in Example 4, specifically in the Figure 2.3b, the comparison

ma �
P̂Y|x

`∗ mb does not need to be verified, since thanks to the property of
transitivity of �P

` it is automatically inferred. Yet, one still has to compute

the remaining preferences, i.e ma �
P̂Y|x

`∗ mc and mc �
P̂Y|x

`∗ mb.
As we will see later, more specifically in Figure 2.5, this criterion is

located between the most and the least imprecise one in producing a set
of predictions, which are respectively the easiest and hardest to obtain
computationally. In other words, maximality is a good compromise, and
also the most theoretically justified rule in Walley’s framework. That is
also one of the reasons why this criterion was chosen to implement our
imprecise classifier presented in Chapter 3 and considered as one of the
main criteria to optimise the multi-label problem, namely Chapter 5

2.1.2.3 Interval dominance

The interval dominance (ID) is a very conservative rule, as one has ŶM
`,P ⊆

ŶID
`,P , producing the largest set-valued predictions. This is mainly due to

the relaxation of Equation (2.11) obtained by using the super-additivity (or
super-linearity) property of the lower expectation operator EP [Walley,
1991, §2.3.3, P3], producing a lower bound of Equation (2.10) as follows

EP [`(·, mb) − `(·, ma)] > EP [`(·, mb)] − EP [`(·, mb)] . (2.15)

In terms of computations to perform, interval-dominance is more ef-
ficient (see Equation 2.18) than maximality, meaning that it can be per-
formed in linear complexity. Formally, interval-dominance criterion can
be defined as follows:
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Definition 6 (Interval dominace) Under this criterion, ma is preferred to mb,
denoted byAP

` , iff the largest expected loss of ma is strictly lower than the smallest
expected loss of mb, for all distribution in the credal set P ∈P , as follows

ma AP
` mb ⇐⇒ EP [`(ma, ·)] < EP [`(mb, ·)] , (2.16)

One can see from Equation (2.15) and Equation (2.16) that ma � mb implies
ma AP

` mb, showing that interval dominance could be quite conservative. The
prediction is then non-dominated elements of the strict partial order AP

`

ŶID
`,P =

{
ma ∈ K

∣∣∣6 ∃mb ∈ Y : mb AP
` ma

}
, (2.17)

That is, interval dominance retains all these predictions not dominated
by the worst-case expected loss situation of another prediction. Besides,
Equation (2.16) can be equivalently expressed as

∀ma ∈ ŶID
`,P ⇐⇒ EP [`(ma, ·)] < arg min

mk∈K

EP [`(mk, ·)] , (2.18)

which amounts to linearly compare all labels O(2n − 1) against the Γ -
minimax value [Augustin et al., 2014, §16.3.4].

In the same way as other criteria, if we consider the loss function `0/1
and the credal set PY|x, Equation (2.16) is equivalent to

ma A
PY|x

`0/1
mb ⇐⇒ Px(Y = ma) > Px(Y = mb). (2.19)

Example 5 Using the Equation (2.16) and the upper and lower expectations
calculated in Example 3, the interval dominance criterion then produces the strict
partial order of below (Figure 2.4a)

BID
`0/1

=


ma A@

P̂Y|x

`0/1
mb, ma A@

P̂Y|x

`0/1
md, mb A@

P̂Y|x

`0/1
md,

md A
P̂Y|x

`0/1
mc

 (2.20)

where ŶID
`0/1,P̂Y|x

= {md, ma, mb} is the predicted set obtained from set BID
`0/1

In contrast, if we consider the cost matrix of `∗, we obtain partial ordering
solution BID

`∗ (Figure 2.4b)

BID
`∗ =

ma A
P̂Y|x

`∗ mb, mc A
P̂Y|x

`∗ mb, md A
P̂Y|x

`∗ mb,

ma A@
P̂Y|x

`∗ md, ma A@
P̂Y|x

`∗ mc, md A@
P̂Y|x

`∗ mc

 (2.21)

where ŶM
`∗,P̂Y|x

= {md, ma, mc} is the predicted set obtained from set BID
`∗

In Example 5, we can first note that the set of predictions is the largest
among the previous one, i.e. ŷΓmin

`,P , ŷΓmax
`,P ∈ ŶM

`,P ⊆ ŶID
`,P . Secondly, even
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md

ma

mb

mc

(a) BID
`0/1

md

ma

mc

mb

(b) BID
`∗

Figure 2.4: Graph of partial order B.

if the solutions of ŶID
`0/1,P̂Y|x

and ŶID
`∗,P̂Y|x

are slightly different, because of

exchanging mb to mc, predictions proposed by the `∗ may be considered
as more relevant since all of them dominate mb, whereas ma and mb of
ŶID
`0/1,P̂Y|x

are non-dominated maximal elements but incomparable with
mc.

2.1.2.4 E-admissibility criterion

In contrast to other criteria, where optimisation problems is always rep-
resented by computing a infimum or a supremum value3, E-admissibility
criterion must verify that all probability distributions of the credal set sat-
isfy Equation (1.6).

Definition 7 (E-admissibility [Levi, 1983]) E-admissibility returns the set of
predictions that are optimal for at least one probability within the credal set P . In
other words, the E-admissibility rule returns the prediction set

ŶE
`,P =

{
y ∈ Y

∣∣ ∃P ∈P s.t. ∀y ′ ∈ K , EP [`(y, ·)]<EP

[
`(y ′, ·)

]}
. (2.22)

The last equation can be equivalently expressed as

ŶE
`,P =

⋃

P∈P

{
arg min
y∈K

EP [`(y, ·)]
}

. (2.23)

If we consider the loss function `0/1 and a credal set PY|x, this gives:

ŶE
`0/1,PY|x

=
⋃

PY|x∈PY|x

{
arg max
y∈K

Px(Y = y)

}
. (2.24)

E-admissibility is often the hardest to solve amongst the criteria pre-
sented in this chapter. Such complexity can be alleviated if we know in

3 As P is considered convex and weak*-compact [Walley, 1991, prop. 3.6.1], meaning that is
compact in the weak*-topology [Walley, 1991, Appendix D], computing the lower/upper
prevision (or expectation) of any loss function is easily performed by using the extreme
points of P , namely, infP · := infext(P) · (in the same way for the supremum).
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advance the set of solutions of the maximality criterion, since as we know,
that ŶE

`,P ⊆ ŶM
`,P (c.f. Figure 2.5), it would be enough to check if any so-

lution of the maximality set is or not E-admissible. In particular, we could
simply verify if all solutions of the maximality are E-admissibles by using
the extreme points ext(P) of the credal set P . But if one solution does
not so, we cannot deduce anything about this one and we should use a
linear program [Augustin et al., 2014, §16.3.3] in order to verify if it exists
at least one probability distribution P ∈ int(P) that does so. Let us see
this matter in the next example.

Example 6 Using Equation (2.24) under the credal set P̂Y|x and the set of solu-
tions of the maximality criterion ŶM

`0/1,P̂Y|x
= {md}. We can easily verify if md

belongs to E-admissibility criterion if one of probability distributions of Table 2.1
returns md. So, E-admissibility criterion produce the following prediction set

ŶE
`0/1,P̂Y|x

= {md} . (2.25)

In contrast, and making use of Equation (2.23) , if we consider the cost matrix of
`∗ and the set of maximality solutions ŶM

`∗,P̂Y|x
= {ma, md}, we can check if the

following expectations obtained from extreme points (or probability distributions)
returns {ma, md}

y ma mb mc md ŷ

EP1 [`∗(y, ·)] 0.195 0.631 0.283 0.209 ma
EP2 [`∗(y, ·)] 0.235 0.578 0.255 0.263 ma
EP3 [`∗(y, ·)] 0.213 0.618 0.234 0.234 ma
EP4 [`∗(y, ·)] 0.189 0.649 0.253 0.202 ma
EP5 [`∗(y, ·)] 0.207 0.666 0.259 0.186 md
EP6 [`∗(y, ·)] 0.210 0.601 0.255 0.243 ma

E-admissibility prediction is then

ŶE
`∗,P̂Y|x

= {ma, md} . (2.26)

In Example 6, we can first note that when the `0/1 function is considered
the optimal decision is still the md label, being coherent with the Γ -minmin
and Γ -minimax solutions obtained previously. When we consider the `∗
cost matrix, the E-admissibility prediction is the set {ma, md}, meaning that
this criterion is more conservative than previous ones, giving us two plau-
sible solutions to decision-makers (i.e. the graduating student).

2.1.2.5 Summarizing

In summary, we can see from the previous examples that certain criteria
are more or less conservatives than other ones. [Troffaes, 2007] has theo-
retically proven these implications in a general context. An illustration to
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summarize those implications is shown in Figure 2.5, where an implication
A→ B means that A ⊆ B.

ŷ
Γmin
`H,PBR

ŷΓmax
`H,PBR

ŶE
`H,PBR

ŶM
`H,PBR

ŶID
`H,PBR

Figure 2.5: Decision relations on all criteria.

Furthermore, it is clear that the more imprecise is our uncertainty
model P , the larger will be the set of predictions of E-admissibility,
Maximality and Interval Dominance criteria. That means, if P is vacuous
(modelling ignorance), the set of predictions will be all the elements of the
output space.

2.2 classification with imprecise probabilities

Cautious classification does not aim to do “better” than their precise coun-
terparts, nor to implement a rejection option (i.e., not classifying at all) in
case of ambiguity [Herbei et al., 2006], but to highlight those hard cases
for which information is insufficient to isolate a single reliable precise pre-
diction, and to propose a subset of possible predictions. We can find in the
literature three “main” ways to build cautious classifier models:

1. using a classical precise classifier but deriving a set-valued predic-
tions from them [Cheng et al., 2012; Mortier et al., 2019] (e.g. partial
reject [Ha, 1997], conformal prediction [Shafer et al., 2008]),

2. making data imperfect (coarse or impartial observations) and then
building a corresponding imperfect robust model, and finally

3. learning an imprecise probabilistic classifier from which set-valued
predictions follow naturally (using techniques such as robust fre-
quentist methods [Cattaneo, 2007; Cattaneo, 2008] or robust Bayesian
inference [Walley, 1991; Walter, 2013; Quaeghebeur et al., 2005]).

In this thesis, we retain the latter, as this one indeed considers imprecision
as parts of its basic axioms, in contrast to the other approaches where
imprecision is not directly integrated into the learned model.

Depending on the chosen decision criterion, the imprecise classifier
may generate a region of imprecision, like in Figure 2.6b. Otherwise, if
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it produces a single prediction, like classical classification, the imprecise
classifier may generate a decision boundary amongst the labels, like in
Figure 2.6a.

H
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H

?
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?

?
?

?

?

H Group B

? Group A

•?P (ŷ∗|X = x∗) ≈ 0.5

(a) Precise decision-making

H
H

H H
H

H

?

?

?

?
?

?

?

H Group B

? Group A

•?Ŷ∗
`,P ⊆ {A,B}

(b) Cautious decisions-making

Figure 2.6: Cautious vs precise decision-making. Figure (a) shows a precise
model, where there are no regions where the model will output set-valued
predictions, in contrast with (b) where such a region exists (in red).

In the literature, and to the best of our knowledge, few methods have
been developed in the spirit of the third category presented above. The
first one of them was the Naive Credal classifier (NCC)[Zaffalon, 1999;
Corani et al., 2008b] (for more details in the next section) which is based
on the Imprecise Dirichlet Model (IDM) [Walley, 1996] to make statistical
inferences from multinomial data and the Naive Bayes assumption.

Corani et al. proposed two new imprecise classifiers [Corani et al.,
2008a; Corani et al., 2015] extending the precise version of the Bayesian
model averaging (BMA) to the imprecise probabilistic setting, so-called
credal model averaging (CMA), by substituting the single prior distribu-
tion over all models of BMA by a set of priors.

Another original work, and also in the same spirit as our imprecise
classifier, is the one of [Paton et al., 2015] which use the imprecise conju-
gate prior density [Coolen, 1993; Quaeghebeur et al., 2005] to create an
imprecise multinomial logistic model. However, its posterior distribution
depends strongly [Paton, 2016, §4.3.2]; (1) on the assumption that it is a
unimodal distribution, and (2) on performing an imprecise Monte Carlo
simulation, meaning that one needs a Monte Carlo simulation for every
distribution in P (which is already complicated with a single distribution).
In addition, the complexity arising from the prior/posterior conjugate de-
pends on the training data size which in practical applications can quickly
increase.

Recently [Dendievel et al., 2018] proposed a first instance of an impre-
cise non-parametric model using the classical kernel density estimation
(KDE), albeit this one is not yet adapted for multivariate analysis. Also,
[Mauá et al., 2017] proposed to extend the relatively new probabilistic
graphical model known as sum-product networks (SPN) to the imprecise
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probabilistic setting, namely credal sum-product networks (CSPN), allow-
ing that singleton weights of SPN can vary in some space with constraints
(i.e. probability simplexes). Finally, [Basu et al., 2020] has also recently
proposed an imprecise binary classifier under sparsity constraints based
on a set of likelihood functions.

The remaining other ones were developed borrowing some ideas of the
NCC, by extending or adapting them to their own scope, such as those
using the IDM. For instance; random forest [Abellán et al., 2017], boosting
classifier [Utkin, 2015], credal decision trees [Abellan et al., 2012], credal
ensemble of classifier [Corani et al., 2014], tree-augmented naive credal
classifier [Zaffalon et al., 2003b], and so on. Unfortunately, there are no
review papers summarizing the weaknesses and strengths from all of them,
which could be a future contribution.

In what follows, we will focus on describing essential concepts about
the naive credal classifier, which is built in the same spirit as ours.

2.3 naive credal classifier

The naive bayes classifier (NBC) is based on an assumption of indepen-
dence, meaning that it assumes the attribute independence given a class,
combined with the simple Bayes’ theorem [Domingos et al., 1997]. It can
formally be written as the marginal probability given the class mk

P(Y = mk|X = x) =
P(Y = mk)

∏d
i=1 P(Xi = xi|Y = mk)∑

ml∈{0,1} P(Y = ml)
∏d
i=1 P(Xi = xi|Y = ml)

. (2.27)

Under the `0/1 loss function [Domingos et al., 1997; Hand et al., 2001], in
which the class (i.e. Equation (2.27)) with the highest probability is chosen,
NBC achieves a good predictive performance, since it tends to assign an
unrealistic high probability to the most probable class which would be the
ground truth one (e.g. the class ma in Equation (2.4)).

Moreover, in terms of the bias-variance tradeoff of the misclassification
error [Friedman, 1997], the probability estimate of NBC has high bias but
also low variance, which is more significant on larger data sets, and hence
with a poorer predictive performance. Yet, with small and medium data
sets (or also with noisy information), on which our research focuses, comes
with the same problem of high bias and low variance, NBC can be a
competitive method under `0/1 and be unfortunately overperformed by
complex classifiers on larger data sets (for further details see [Augustin
et al., 2014, §10.2]).

The Naive credal classifier (NCC) [Zaffalon, 2002] is based on the same
assumptions as NBC, but instead of only using a single distribution to
estimate the probability of Equation (2.27), NCC replaces it with a credal
set P , in which case it becomes necessary to choose one of the criteria
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presented in Section 2.1 for the inference-step. Therefore, in order to keep
a consistency with the scheme presented in Figure 1.1 , we will first detail
the inference-step and will then present the imprecise learning model.

NCC has been applied in a vast variety of real applications, such as
medicine [Zaffalon et al., 2003a], agriculture [Zaffalon, 2005], geology [An-
tonucci et al., 2007], or betting for FIFA World cup [Quaeghebeur et al.,
2017].

We decided to present two decision-making criteria for this classifier;
the interval dominance and the maximality, the latter being the most used
in The Society for Imprecise Probability: Theories and Applications (SIPTA4),
under the `0/1 loss function5. Of course, it is straightforward to obtain the
optimal solution of Γ -minimax and Γ -minimin criteria from the interval
dominance criterion.

2.3.1 Decision making applied to NCC

interval dominance Under the `0/1 loss function and a credal set
PY|x, the optimization problem is reduced to computing lower and upper
probability bounds [Px(Y = mk),Px(Y = mk)] (c.f. Equation (2.19)) over all
possible marginals PY and conditional distributions PX|Y . This can be
performed by solving the following minimization/maximization problem
for Equation (2.27)

Px(Y = mk) = min
PY∈PY

min
PXi|Y

∈PXi|Y

i∈{1,...,d}

P(Y = mk)
∏d
i=1 P(Xi = xi|Y = mk)∑

ml∈K P(Y = ml)
∏d
i=1 P(Xi = xi|Y = ml)

,

Px(Y = mk) = max
PY∈PY

max
PXi|Y

∈PXi|Y

i∈{1,...,d}

P(Y = mk)
∏d
i=1 P(Xi = xi|Y = mk)∑

ml∈K P(Y = ml)
∏d
i=1 P(Xi = xi|Y = ml)

,

and assuming that the denominator is different from zero, the lower prob-
ability can be reduced to

Px(Y = mk)= min
PY∈PY

min
PXi|Y

∈PXi|Y

i∈{1,...,d}



1+

∑
ml∈K
ml 6=mk

P(Y = ml)
d∏
i=1
P(Xi = xi|Y = ml)

P(Y = mk)
d∏
i=1
P(Xi = xi|Y = mk)




−1

(2.28)

4 Web site: http://www.sipta.org/
5 Developments presented below are not at all applicable to a generic loss function `.

http://www.sipta.org/
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= min
PY∈PY


1+

∑
ml∈K
ml 6=mk

P(Y = ml)
∏d
i=1 P(Xi = xi|Y = ml)

P(Y = mk)
∏d
i=1 P(Xi = xi|Y = mk)




−1

.

(2.29)

Note that, before moving to the last equation, we firstly focus on the inner
minimization problem, in which minimizing the fraction term (1+ a/b)−1

is the same as maximizing a/b where a and b do not share any common
term. Additionally, note that we can measure the lower and upper bounds
independently of P(Xi = xi|Y = m∗) because they are defined for different
conditioning events, meaning that we can without any problem compute
the lower bound of P(Xi = xi|Y = mk) without considering quantities
P(Xi = xi|Y = m∗) (c.f. [Zaffalon, 1999, §3.1]). In a similar vein, we can
obtain the upper bound

Px(Y = mk)= max
PY∈PY


1+

∑
ml∈K
ml 6=mk

P(Y = ml)
∏d
i=1 P(Xi = xi|Y = ml)

P(Y = mk)
∏d
i=1 P(Xi = xi|Y = mk)




−1

.

(2.30)

Now the problem of maximizing/minimizing over all possible marginal
distributions PY can be solved in two ways: (1) enumerating the extreme
points, if possible, and computing every one of them to obtain the mini-
mum/maximum (i.e. combinatoric problem), or (2) directly resolving an
optimization programming problem on constraints obtained in the func-
tional form of the credal set PY .

However, in this thesis, when we use this imprecise classifier, for prac-
tical purposes and as the number of training data is usually sufficient in
our experimental experiences, we shall assume a precise estimation of the
marginal distribution6.

maximality In contrast with interval dominance, which is often easier
to solve, maximality can be complex. However, thanks to the indepen-
dence assumption it can simply be solved for the NBC. We first recall here
the maximality criterion

ma �P
` mb ⇐⇒ inf

PY|X∈PY|X

Px(Y = ma) − Px(Y = mb) > 0

applying Equation (2.27) and omitting its denominator, the latter being
the same positive constant of normalization of each probability, it can be
written

6 A set of marginal distribution can be strongly recommended if we work with imbalanced
datasets, which will not be a focus in this thesis.
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inf
PY∈PY

inf
PX|Y∈PX|Y

P(X = x|Y = ma)P(Y = ma) − P(X = x|Y = mb)P(Y = mb) > 0,

using the same arguments of independence as for the previous criteria, i.e.
different conditioning events, we can easily obtain

inf
PY∈PY

P(Y = ma)
d∏
i=1

P(Xi = xi|Y = ma) − P(Y = mb)
d∏
i=1

P(Xi = xi|Y = mb) > 0,

once again this last optimization problem can be solved using the same
argument as for the previous criterion.

Now, we have to get the probability bounds using a statistical model, in
this case, we shall use, as classically done, the imprecise Dirichlet model.

2.3.2 Imprecise statistical model applied to NCC

Imprecise Dirichlet model (IDM) [Walley, 1996] is a statistical model ver-
ifying several axiomatic principles which are desirables for (indecision)
inference step, such as the learning from data and representation invariance
principle (RIP) . RIP: “inferences based

on observations should
not depend on the
sample space in which
the observations and
future events of interest
are represented”
— Walley (1996).

Firstly, let us start by defining some notations

X := X1 × . . .Xd a finite collection of d feature domains,

x = (x1, . . . , xd) ∈X

x1 ∈X1, . . . , xd ∈Xd

a value from the input space,

(x, mk) ∈X ×K an instance x labelled with mk class,

D = {(xi,yi)}Ni=1 a training data set generated i.i.d.

IDM is built on a natural Bayesian approach using a conjugate prior
distribution. Considering that

P(Xi = xi|Y = mk) = θxi|mk , (2.31)

P(Y = mk) = θmk , (2.32)

so that the joint distribution can be written as follows

P(Y = mk,X = x) := θmk,x = θmk

d∏
i=1

θxi|mk , (2.33)

where θmk,x is the chance of the multinomial distribution (i.e. the odds that
the couple (mk, x) happens at the same time), such that θxi|mk denote the
chance that Xi = xi ∈X1 conditional on the class Y = mk, and similarly for
θmk .
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The full likelihood after observing data n can thus be expressed as
follows (as a product of multinomial densities)

L(θ|n) ∝
∏

mk∈K

θ
n(mk)
mk

d∏
i=1

∏
xi∈Xi

θ
n(xi|mk)
xi|mk

(2.34)

where n(·) is a count function that counts the number of occurrences of
events xi|mk and mk in the observed data set. n(xi|mk) is the number of
instances in the training set where Xi = xi and the label value is mk, such
that

∑
xi∈Xi

n(xi|mk) = n(mk), and n(mk) is the number of instances in the
training set where the label value is mk, such that

∑
mk∈K n(mk) = N.

A natural conjugate prior distribution, which can be obtained by apply-
ing the Proposition 5.4 of [Bernardo et al., 2000], to get a posterior distribu-
tion of the same family is a product of Dirichlet prior densities [Zaffalon,
2001]

f(θ|t, s) ∝
∏

mk∈K

θ
st(mk)−1
mk

d∏
i=1

∏
xi∈Xi

θ
st(xi|mk)−1
xi|mk

(2.35)

with a real number s and a function t(·) as hyper-parameters, over which
we may consider different sets of constraints [Walley, 1996] [Zaffalon, 2001,
§2.3]. For practical purpose, we decided to use (a.k.a local IDM [Augustin
et al., 2014, §10.4.4])∑

mk∈K

t(mk) = 1 and
∑
xi∈X

t(xi|mk) = 1 (2.36)

so that t(mk) ∈ [0, 1] and t(xi|mk) ∈ [0, 1].
Coupling the likelihood and the prior density, we can easily obtain the

posterior distribution which is a product of independent Dirichlet densi-
ties7

π(θ|t, s,n) ∝
∏

mk∈K

θ
st(mk)+n(mk)−1
mk

d∏
i=1

∏
xi∈Xi

θ
st(xi|mk)+n(xi|mk)−1
xi|mk

. (2.37)

Remark 2 Note that we opted to use an unusual re-parametrization of the Dirich-
let distribution, since this one often use the hyper-parameter α with constraints∑K
i = αi such that αk = stk. Walley conveniently splits it in two parameters

with the aim of latter fixing s in the model.

7 A product of independent densities may, for instance, be represented by: π :=
π(β1, . . . ,βK) ∝ f1(β1) . . . fK(βK), and in which the expected value of a single param-
eter βk over the full distribution can be reduced to marginal expectation over parameter
βk: Eπ[βk] = Eπ(βk)[βk]
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So, we can compute the expected value of each probability as follows

EPθ

[
θxi|mk |t, s,n

]
= P(Xi = xi|Y = mk) =

n(xi|mk) + st(xi|mk)∑
xi∈Xi

n(xi|mk) + st(xi|mk)
,

EPθ [θmk |t, s,n] = P(Y = mk) =
n(mk) + st(mk)∑

mk∈K n(mk) + st(mk)

resolving the sum of denominators, we have

P(Xi = xi|Y = mk) =
n(xi|mk) + st(xi|mk)

n(mk) + s
, (2.38)

P(Y = mk) =
n(mk) + st(mk)

N+ s
(2.39)

computing the lower and upper probability bounds when t(·) → 0 for
lower one and t(·)→ 1 for upper one, we have

P(Xi = xi|Y = mk) ∈
[
n(xi|mk)
n(mk) + s

,
n(xi|mk) + s
n(mk) + s

]
, (2.40)

P(Y = mk) ∈
[
n(mk)
N+ s

,
n(mk) + s
N+ s

]
(2.41)

Note that the higher s is, the wider the intervals [P(Xi = xi|Y = mk),P(Xi =
xi|Y = mk)] are (the same for [Px(Y = mk),Px(Y = mk)]). For s = 0, we
retrieve the classical NBC with precise predictions, and for high enough
values of s >>> 0, the NCC model will make vacuous predictions (i.e.
abstain for all labels Y = K ).

Remark 3 ([Walley, 1996, p. 10]) Note that the degree of imprecision of the
upper and lower posterior probability can be measured by P(Y = mk) − P(Y =

mk) = s
N+s , which does not depend on the event Y = mk, but on the imprecision

level s and on the training data set size.

Finally, if the input space of training data set is continuous, it shall be
discretized in z intervals in order to get values of n(xi|mk) and n(mk). For
simplicity, we shall use in this thesis, depending on the case, only two
levels of discretization z = 5 and z = 6 with equal-width intervals. Since
our main goal is to compare model behaviours and not to optimize our
approach, this seems sufficient.

Remark 4 (Laplace smoothing) Also called additive smoothing, this correction
will be used when we compare the precise case amongst its imprecise version,
since using s = 0 it may be possible to get n(xi|mk) = n(mk) = 0 because of
discretization.
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2.4 conclusion

After having introduced some of the main concepts used in the rest the
thesis, we can start presenting our contributions.

Note that preliminaries as well as existing works specific to those con-
tributions have not been discussed here, but will be in each subpart.



Part I

I M P R E C I S E G A U S S I A N D I S C R I M I N A N T

Gaussian discriminant analysis is a popular classification
model, that in the precise case can produce unreliable pre-
dictions in case of high uncertainty (e.g., due to scarce or
noisy data). We remedy this, by proposing a new Gaussian
discriminant analysis based on robust Bayesian analysis and
near-ignorance priors. The model delivers cautious predictions,
in form of set-valued class, in case of limited or imperfect
available information. Our experiments show that including
an imprecise component in the Gaussian discriminant analysis
produces reasonably cautious predictions, and that set-valued
predictions correspond to instances for which the precise
model performs poorly.





Chapter 3
Imprecise Gaussian Discrimi-

nant Classification

“What we know is not much. What we
don’t know is enormous.”

—Pierre Simon Laplace
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A well-known precise generative classifier model used to perform the
classification task, that we will consider in this chapter, is the Gaussian
discriminant analysis (GDA) [Friedman et al., 2001, §4.3]. Let X ×K
be the space of observations, with X ∈ X = Rp a random vector and
Y ∈ K = {m1, ..., mK} the set of labels. The main goal of GDA is to estimate
the theoretical conditional probability distribution (c.p.d) PY=mk|X of the
class Y = mk given an observation x via Bayes’ theorem as follows

PY=mk|X =
PX|Y=mkPY=mk∑

ml∈K PX|Y=mlPY=ml
. (3.1)

Thus, quantifying PY=mk|X is equivalent to quantify PX|Y=mk and the
marginal distribution PY .



38 chapter 3 . imprecise gaussian discriminant classification

In precise probabilistic approaches, this is typically done by using max-
imum likelihood estimation (MLE) and by making some parametric as-
sumptions about the probability density Px|Y=mk (i.e. Gaussian probability
distribution (g.p.d)) in order to find a plausible estimate (see Section 3.1.1).
However, such precise estimates usually have trouble differentiating dif-
ferent kinds of uncertainties [Senge et al., 2014], such as uncertainty due
to ambiguity (mixed classes in some areas of the input space) and uncer-
tainty due to lack of knowledge or information (limited training data set
inducing biases in estimates [Braga-Neto et al., 2004]).

Bayesian methods, in contrast, incorporate some prior beliefs in the
form of probability distribution defined on unknown parameters of the
model. Such beliefs typically come from expert opinions or persons that
are knowledgeable in the context of the problem. However, it is also well-
known that the elicitation of prior beliefs can be absent or hard to obtain
during the study of a problem, especially when learning classifiers. A
classical way out of this problem is to use a so-called non-informative prior,
which allow one to obtain a posterior not including any prior knowledge
[Dalton et al., 2015].

Yet, the use of such prior is not without problems within the Bayesian
theory, as it is often not coherent/proper in the sense of De Finetti, and
mainly boils down to use maximum likelihood estimators. Moreover, it
may seem strange that an absence of prior should lead to a fully pre-
cise, completely informed posterior. Alternatively, it has been argued and
shown that using truly vacuous prior information (considering all possible
priors, including very extreme ones) while remaining coherent with this
information usually lead to vacuous posterior predictions [Walley, 1991;
Bernardo et al., 2000, §7.4, §5.6.2] (i.e. our model would not be able to
learn from data), so considering that we have no information also seems
a poorly sensible approach. Walley has therefore proposed to use a set
of non-informative prior distributions, called near-ignorance priors [Walley,
1991, §4.6.9], to solve this issue. These near-ignorance priors must respect
certain properties [Benavoli et al., 2014, §2] so as not to obtain vacuous pre-
dictions, while remaining invariant under a large set of transformations.
Hence, one of our motivations in this chapter is to not use a single prior
distribution, but a set of prior distributions (or credal set [Levi, 1983]) to
reflect our lack of knowledge and obtain cautious predictions.

In Section 3.1, we describe the estimation of the conditional distribu-
tion in the case of the precise GDA, using a frequentist inference approach.
We then extend this precise parametric estimation to imprecise estimation
in a robust Bayesian inference context, using the IP near-ignorance model
proposed by Benavoli et al. [Benavoli et al., 2014] to do so and obtaining
estimates in the form of a convex set. Coupling this imprecise estima-
tion with the maximality criterion, we present our Imprecise GDA (IGDA)
model and its different variants in Section 3.2.
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In Section 3.3, we perform a set of experiments on different datasets
using our imprecise model and compare it to its precise counterparts. We
show that the cautious predictions are useful, in the sense that they (1)
concern instances for which the precise classifier often makes mistakes,
(2) often include the true class within the predicted set on these same
instances, and (3) are not overly imprecise.

Furthermore, we briefly discuss (focusing on computational issues) in
Section 3.4 the extension of our method to other settings, namely to the
case where the class proportions PY=mk are also imprecisely estimated,
and where the criterion to minimise is not the raw number of errors (cor-
responding to a 0/1 loss function) but a generic loss function.

In Section 3.5, we perform supplementary experiments on 4 different
synthetic data sets in order to investigate how our imprecise model and
its counterparts behave in terms of predictive robustness when: (1) the
testing data sets are corrupted by some noise (i.e., do not follow the i.i.d.
assumption), and (2) the number of training data considerably decreases.

Finally, we propose in Section 3.6 an “optimal” algorithm for a cautious
prediction using the maximality criterion, in the same spirit as the one
of Nakharutai et al. (2019). We also provide a comparative benchmark
between the naive and “optimal” version in order to empirically to show a
computational improvement.

3.1 gaussian discriminant analysis model

As mentioned above, a classical way to estimate the distribution PY|X is by
using Bayes’ theorem. Sections 3.1 and 3.2 describe its use for the precise
and imprecise approaches, respectively.

3.1.1 Statistical inference with precise probabilities

Among the many ways to model PX|Y=mk , this work focus on parametric
discriminant analysis for which PX|Y=mk follows a multivariate Gaussian
distribution N(µmk ,Σmk) with unknown mean µmk and covariance matrix
Σmk , i.e.:

Gmk := PX|Y=mk ∼ N(µmk ,Σmk) (3.2)

whose probability density function is written

P(X = x|Y = mk) =
1

(2π)p/2|Σmk |
1/2
e
−12 (x−µmk)

TΣ−1mk
(x−µmk). (3.3)

The marginal distribution is defined as a multinomial πy := PY , where
P(Y = mk) = πmk . So, under a 0/1 loss function, the optimal prediction
becomes:
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ϕ̂(x|θmk) :=arg max
mk∈K

logπmk −
1

2
log |Σmk |−

1

2
(xT−µmk)

TΣ−1mk (x
T−µmk) (3.4)

where Θ = {θmk |θmk = (πmk ,Σmk ,µmk),∀mk ∈ K} is the parametric space
from which comes our estimate. In Table 3.1, we remind different dis-
criminant models corresponding to various constraints imposed to the co-
variance matrices of the conditional distributions given by Equation (3.2).

Discriminant analysis model Assumptions (∀mk ∈ K) Parametric space (∀mk ∈ K)
Parametric Gaussian conditional distribution PX|Y=mk

Linear Discriminant [Friedman et al., 2001, §4.3] Homoscedasticity: Σmk = Σ Θ = {θmk |θmk = (πmk ,Σ,µmk)}
Quadratic Discriminant [Friedman et al., 2001, §4.3] Heteroscedasticity: Σmk = Σk Θ = {θmk |θmk = (πmk ,Σk,µmk)}
Naive Discriminant [Friedman et al., 2001, §6.63] Feature independence: Σmk = σTkI Θ = {θmk |θmk = (πmk ,σk,µmk)}
Euclidean Discriminant [Marco et al., 1987] Unit-variance feature indep.: Σmk = I Θ = {θmk |θmk = (πmk ,µmk)}

Table 3.1: Gaussian discriminant analysis models

In frequentist inference, usual estimation of parameters of Equa-
tion (3.4) is obtained by MLE using a subset Dmk = {(xi,k,yi,k=mk)|i =

1, . . . ,nk} ⊆ D of observations of training data. We have π̂mk = nk/N

(frequency of mk) and µ̂mk = xk (sample mean of Dmk). Depending
on whether we assume the model to have (1) dependent features, we
will have an hetero- or homo-scedastic assumption, with respectively
Σ̂mk = Ŝmk (sample covariance matrix of Dmk) or Σ̂mk = Ŝ (within-class
covariance matrix D), or to have (2) independent features, we will have
features weighted proportionally to their inverse variance Σ̂mk = σ̂TkI or
unweighed with all weights equal to 1, i.e. Σ̂mk = I.

However, those estimates do not account for the quantity of data they
are based on, which may be low to start with, and may also vary signifi-
cantly across classes, especially in case of imbalanced data sets. To solve
this issue, we propose in the next section an imprecise discriminant model,
based on the use of imprecise probabilities and using results from Benavoli
et al. [Benavoli et al., 2014].

3.1.2 Statistical inference with imprecise probabilities

To estimate PX|y and PY in the form of convex sets of distributions, we will
use robust Bayesian inference under prior near-ignorance models. Before
describing our imprecise estimation, we make three general assumptions
for our imprecise Gaussian discriminant model:

1. Normality of conditional probability distribution PX|Y=mk := Gmk , as
in the classical case.

2. A precise estimation of marginal distribution PY := π̂y.

3. A precise estimation of covariance matrix Σk := Σ̂k = Ŝk or Ŝ.
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In Section 3.4, we will discuss the relaxation of assumption 2, considering
a set of distributions PY .

3.1.2.1 Robust Bayesian inference

The estimation of parameters in Bayesian inference relies mainly on two
components; the likelihood function and the prior distribution, from which
posterior inferences can then be made on unknown parameters of the
model, in our case θmk .

In the particular case of PX|Y=mk , the likelihood function is the product
of conditional probabilities

∏nk
i Pxi,k|yi,k,θmk

and the prior distribution Pθmk
models our knowledge about θmk = (Σmk ,µmk). In this chapter, we focus
on estimating imprecise mean parameters (i.e. θmk = µmk), assuming a
(precise) estimation of Σ̂mk , for reasons of computational complexity that
will be discussed in Section 3.7. Thus, the posterior on the mean is such
that

P(µmk | Dmk) ∝
nk∏
i

P(X = xi,k | µmk ,yi,k = mk)P(µmk). (3.5)

To simplify, we will from now on remove the subscript mk, always bear-
ing in mind that these estimations are related to a group of observations
labelled mk.

3.1.2.2 Near-ignorance on Gaussian discriminant analysis

Near-ignorance models allow us to provide an “objective inference” approach,
representing ignorance about unknown parameter and letting the data speak for
themselves. In their work, Benavoli et al in [Benavoli et al., 2014] propose a
new near-ignorance model based on a set of distributions M , which aims
to reconcile two approaches, namely, re-parametrization invariance and
Walley’s near-ignorance prior. For that, they define four minimal proper-
ties, which must be satisfied whenever there is no prior information about
the unknown parameter, on the set of distributions M (more details in
[Benavoli et al., 2014, §2]).

(P1) Prior-invariance, that states that M should be invariant under some
re-parametrization of the parameter space (translation, scale, permu-
tation, symmetry, etc).

(P2) Prior-ignorance, that states that M should be sufficiently large for
reflecting a complete absence of prior information w.r.t. unknown
parameters, but no too large to be incompatible with property (P3).

(P3) Learning from data, that states that M should always provide non-
vacuous posterior inferences, in other words, it should learn from the
observations.
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(P4) Convergence, that states that the influence of M on the posterior
inference vanishes when increasing number of observations, i.e. n→∞, requiring consistency with the precise approach at limit.

Benavoli et al [Benavoli et al., 2014] provide a set of conjugate priors M
for regular multivariate exponential families [Robert, 2005, §3.3.4] (FExp) that
satisfies the last four properties under quite weak assumptions. Borrowing
from [Benavoli et al., 2014], we can define this set of prior distribution M
as follows:

Definition 8 (Prior near-ignorance for k-parameter exponential families
[Benavoli et al., 2014, §4, eq. 16]) Let L be a bounded closed convex subset of
Rk strictly including the origin ([Benavoli et al., 2014, lem. 4.5]).

L =
{
ζ ∈ Rk : ζi ∈ [−ci, ci], ci > 0, i ∈ {1, . . . ,k}

}
(3.6)

Let W ∈ W = Rk be a random variable with probability density function defined,
for all ζi 6= 0, as:

p(w) = exp(ζTw)

k∏
i=1

ζi
exp(ζiri)

1Wri
(wi) (3.7)

with

Wri =

{
(−∞, ri] if ζi > 0
[ri,∞) if ζi < 0

(3.8)

and where ζ, r ∈ Rk are k-real values. Otherwise, for all ζi = 0 the density
p(w) becomes a multivariate uniform distribution with Wri = [−ri, ri]. Given an
ζ ∈ L, it can be shown that the following set of prior distributions (c.f. [Benavoli
et al., 2014, th. 4.6])

Mw=
{
w ∈ W | p(w) ∝ exp(ζTw), ζ = [ζ1, . . . , ζk]T∈ L

}
, (3.9)

satisfies (P1)-(P4) properties as well as conjugacy between the likelihood and the
set of posterior distributions.

Since our Gaussian probability distribution PX|y=mk given by Equation
(3.2) belongs to FExp, we can use for the mean a set M µ of prior distribu-
tions satisfying Equation (3.9), in order to get a set of posterior distribu-
tions M µ

n having the same functional form (FExp) [Bernardo et al., 2000,
§5.2]:

M µ
n =

{
(µ
∣∣xn, ζ) ∝ N

(
ζT +nxn

n
,
1

n
Σ̂

) ∣∣∣∣∣µ ∈ Rp, ζ ∈ L

}
(3.10)
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where xn = 1
n

∑n
i=1 xi and ζ ∈ L. A sketch of how to get the Equation (3.10)

is presented below (further details in [Benavoli et al., 2011, §4.1]).

Proof 1 (Normal prior-near ignorance conjugate) Let {x1, . . . , xn} ⊆ X =

Rp be a sample i.i.d. generated of a random multivariate normal N(µ,Σ), so the
likelihood based on a new re-parametrisation η = Σ−1µ can be written:

L(µ|x1, . . . , xn,Σ) ∝ exp
{
n

(
xTnΣ

−1µ−
1

2
µTΣ−1µ

)}
(3.11)

∝ exp
{
n

(
xTnη−

1

2
ηTΣη

)}
(3.12)

where log-partition function of previous equation is b(η) = 1
2η
TΣη and its deriva-

tive ∇ηb(η) = Ση = µ, besides the prior near-ignorance proposed for Benavoli
at al has the following form:

p(η) ∝ exp
{
ζTη
}

making a transformation of the original parameter space η = Σ−1µ, the last
equation can be reduced to:

p(µ) ∝ exp
{
ζTΣ−1µ

}
. (3.13)

Therefore, we can calculate the posterior distribution combining the Equation
(3.13) and (3.11):

p(µ|X,Σ) ∝ exp
{
n

(
xTnΣ

−1µ−
1

2
µTΣ−1µ

)}
exp
{
ζTΣ−1µ

}
(3.14)

∝ exp

{
−
n

2

[
µTΣ−1µ− 2

(
nΣ−1xn + Σ

−1ζ

n

)T
µ

]}
(3.15)

∝ exp

{
−
n

2

∥∥∥∥µ−
nxn + ζ

n

∥∥∥∥
2

Σ−1

}
(3.16)

the posterior distribution is thus:

µ|X,Σ ∼ N

(
nxn + ζ

n
,
1

n
Σ

)
(3.17)

�

We can then estimate the lower and upper values of the unknown µ
parameters, giving us for every dimension i ∈ {1, . . . ,p} [Benavoli et al.,
2014]:

inf
Mµ
n

E[µi|xn, ζ] = E[µi|xn, ζ] =
−ci +nxn

n
(3.18)
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sup
Mµ
n

E[µi|xn, ζ] = E[µi|xn, ζ] =
ci +nxn

n
(3.19)

As a result, we will obtain for each label mk a convex space of estimated
values for the mean µmk which can be represented by the hyper-cube

Gmk=

{
µ̂mk∈Rp

∣∣∣∣∣µ̂i,mk∈
[
−ci +nkxi,nk

nk
,
ci +nkxi,nk

nk

]
,∀i∈ {1, ...,p}

}
. (3.20)

Remark 5 The convergence property (P4) ensures us that no matter the initial
value of our convex space L, when the number of observations tends to infin-
ity, n → ∞, their influence on the posterior inference of µ̂ will disappear, i.e
Gmk −−−→n→∞ xn, and will become the asymptotic estimator of the precise Gaussian
distribution.

On the basis of the set Gmk previously calculated, we can simply con-
sider the following set of conditional probability distributions PX|y=mk (or
set of predictive distributions) for every label mk on K :

PX|y=mk =
{

PX|Y=mk

∣∣∣ PX|Y=mk ∼ N(µmk , Σ̂mk),µmk ∈ Gmk

}
(3.21)

In what follows, we study how we can incorporate the sets of distributions
PX|Y=mk in Gaussian discriminant analysis, using maximality (Definition
5) to get our (possibly) imprecise classification.

3.2 imprecise classification with `0/1 loss function

Let us now discuss the operational aspects (inferences and computations)
of our approach to make cautious classification by using sets of conditional
distributions given by Equation (3.21) and obtained from a near-ignorance

model. Using the maximality criterion, to know whether ma �
PY|x

`0/1
mb, we

need to solve Equation (2.12) by applying Bayes’ theorem:

inf
PY∈PY

inf
PX|ma∈PX|ma
PX|mb

∈PX|mb

P(X = x|Y = ma)P(Y = ma) − P(X = x|Y = mb)P(Y = mb) > 0

(3.22)

as the marginal P(X = x) can be omitted from the denominator, being the
same positive constant of normalisation for each probability.

As conditional distributions sets PX|Y=mk are independent of each oth-
ers, we can rewrite Equation (3.22) as follows (cf. [Zaffalon, 2002, eq. 4.3]):

inf
PY∈PY

P(X = x|Y = ma)P(Y = ma) − P(X = x|Y = mb)P(Y = mb) > 0 (3.23)
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where P (P) is the infimum (supremum) conditional probability. Also,
applying Assumption 2 and the fact that every π̂y > 0, solving Equation
(3.23) is reduced to finding the two values

P(X = x|Y = ma) = inf
PX|ma∈PX|ma

P(X = x|Y = ma), (3.24)

P(X = x|Y = mb) = sup
PX|mb

∈PX|mb

P(X = x|Y = mb) (3.25)

As PX|y=mk is a set of Gaussian distributions, the solutions of Equations
(3.24) and (3.25) are respectively obtained for the following values of the
means

µma
= arg inf
µma∈Gma

−
1

2
(x− µma)

T Σ̂−1mb(x− µma), (3.26)

µmb = arg sup
µmb∈Gmb

−
1

2
(x− µmb)

T Σ̂−1mb(x− µmb), (3.27)

where Σ̂−1mb is the inverse of the covariance matrix (Assumption 3). Depend-
ing on the internal structure of the precise covariance matrix Σ̂k, solving
Equations (3.26) and (3.27) may be more or less computationally challeng-
ing. We will consider two main different imprecise discriminant models:
(1) with non-diagonal covariance matrix and (2) with diagonal covariance
matrix.

3.2.1 Gaussian discriminant model with dependent features

Similarly to the distinction made in the precise case, we will consider two
different variants of the non-diagonal case.

Case 1 Imprecise Quadratic discriminant analysis (IQDA): if we suppose that
the covariance structures of all groups of observations are different, that is Σ̂mk =

Ŝmk , ∀mk ∈ K .

Case 2 Imprecise linear discriminant analysis (ILDA): if we assume that all
groups of observations have the same covariance structure, that is Σ̂mk = Ŝ,∀mk ∈
K .

In those cases where the covariance matrix contains collinear columns,
Σ̂mk will not be invertible, in which case we use the singular value decompo-
sition (SVD) method for computing the pseudo-inverse of covariance matrix.
Before studying the computational aspects of IQDA and ILDA, i.e. Equa-
tions (3.26) and (3.27), we will illustrate the last case (ILDA) in Example
7.
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Example 7 The interest of modelling an imprecise mean is to be able to detect
areas where we should be cautious and predict sets of labels rather than a single
one. For example, in Figure 3.1, we simulated two groups of observations xma∗
and xmb∗ (i.e. binary case), each with two non-correlated regressors and different
means:

( xma1
xma2

)
∼ N(

(
0.25
0.5
)

,
(
1 0
0 1

)
)(

xmb1
xmb2

)
∼ N(

(
0.5
−1.0

)
,
(
1 0
0 1

)
)

L =
{
ζ ∈ R2 : ζi ∈ [−ci, ci], ci = 2

}
Figure 3.1a illustrates this example and pictures the following things: groups
of observations xma∗ and xmb∗ with the symbols ? and H, respectively, and the
posterior convex estimates G (solid) of the means after injecting the information
contained in the training data.

We also drew the (precise) mean of each group, i.e. µma and µmb , as solid
points, and a black dot (•) representing a new unlabelled instance x as well as
positions of solutions of Equations (3.26) and (3.27). In Figure 3.1, we observe
(in purple) an area of uncertainty, where both labels are incomparable, generated
by the imprecise mean and the maximality criterion.

H
H

H

H

H H

H

?

?

?

?

?

?

?

H Group B

? Group A

Set-box posterior
estimators µ̂∗

•

New observation•

•
µ̂mb•

µ̂
ma

•
Lower/Upper estima-

tions

{?} then: ma �M mb

(a) Upper/lower estimation of µk (b) Imprecise decision area

Figure 3.1: Imprecise boundary area and estimation. Figure 3.1a shows an
example of the imprecise estimation of means µ∗, and Figure 3.1b shows
an imprecise decision area of purple colour where the subset Ŷ= {ma, mb}
of labels is the imprecise decision, that is in this region ma and mb are
incomparable.

Let us now discuss the problem of solving Equations (3.26) and (3.27).
Expressing Gmb as constraints, the solution µmb of Equation (3.27) can be
written as
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µmb = arg sup −
1

2
µ̂TmbΣ̂

−1
mb µ̂mb + q

T µ̂mb

s.t.
−cj +nmbxj,nmb

nmb
6 µ̂j,mb 6

cj +nmbxj,nmb

nmb
,

qT = xT Σ̂−1mb , ∀j ∈ {1, ...,p}

(BQP)

This optimisation problem is well known as a box-constraint quadratic
program (BQP) [De Angelis et al., 1997], as (1) the constraint space Gmk is
a convex space, and (2) Σ̂−1mk is a positive (semi)-definite matrix, pending
the fact that the covariance matrix Σ̂mk does not have multicollinearity
problems [Johnson, 1970]. Computing an optimal global solution of (BQP)
in polynomial time is easy using modern optimisation libraries (e.g. using
the CvxOpt python library [Andersen et al., 2018]), as we have to maximize
a concave function (or, equivalently, minimise a convex one).

Finding µma
in Equation (3.26) is much more difficult, as one seeks to

solve the optimization problem

µma
= arg inf
µ̂ma∈Gma

−
1

2
µTmaΣ̂

−1
maµ̂ma + q

T µ̂ma . (NBQP)

That comes down this time to maximizing a convex function over box-
constraints (Gma), which is known to be NP-Hard [Pardalos et al., 1991].
To solve it, we use a brand-and-bound (B&B) algorithm [Burer et al., 2009;
Xia et al., 2015], that employs a finite branching based on the first-order
Karush-Kuhn-Tucker1 conditions and polyhedral semidefinite relaxation
in each node of the B&B tree (more details in [Burer et al., 2009]).

3.2.2 Gaussian discriminant model with independence features

When the number of features becomes high, and the associated optimi-
sation problem quite time consuming to solve, it may be interesting to
consider some additional assumptions which will significantly reduce the
inference complexity. In what follows, we will assume that features xji
are independent conditional on the label mk. This translates in the fact
that covariance matrices become diagonal matrices, i.e. Σmk = σTmkI with
σTmk = (σ1mk , . . . ,σpmk) a p-dimensional vector containing the variance of
each feature, which can be interpreted as weights of the features. There-
fore, we can rewrite Equations (3.26) and (3.27) as follows:

µma
= arg inf
µma∈Gma

−
1

2
wma ‖x− µma‖2 , (3.28)

1 Also known as KKT, which allows to solve problems of optimisation subject to non-linear
constraints in the form of inequalities.
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µmb = arg sup
µmb∈Gmb

−
1

2
wmb ‖x− µmb‖2 (3.29)

where wmk = (w1mk , . . . ,wpmk)
T such that wjmk = 1/σ

j
mk ,∀j ∈ {1, . . . ,p}, in

this scenario, we will consider two new models.

Case 3 Imprecise naive discriminant analysis (INDA): this case is similar to the
Naive Bayes classifier, as we simply consider the assumption Σmk = σ̂TmkI where
σ̂mk are the empirical variance estimator obtained from a group of observation
belonging to the label mk.

Case 4 Imprecise Euclidian discriminant analysis (IEDA): this is a case more
specific than INDA, where we assume that for every j ∈ {1, . . . ,p} we have
σ̂
j
mk = 1, meaning that the measure used to evaluate the probability of a label given

a new instance is proportional to the Euclidian distance between the instance and
the corresponding mean. The Euclidean classifier is one of the simplest existing
classifier, and is the supervised counterpart of the standard k-means method.

We show below that when the covariance matrix is diagonal, optimisation
problems (3.28) and (3.29) become very easy (i.e. linear in p, O(p)) to solve.

Proposition 1 For two vectors x,w ∈ Rp, and a box-convex space on Rp:

G =
{
µ ∈ Rp

∣∣ µj ∈ [µj,µj], ∀j ∈ {1, . . . ,p}
}

- the infimum weighted distance subject to constraints G is:

inf
µ∈G

−
1

2
wT ‖x− µ‖2 = −

1

2

p∑
j

wj max
j

{(xj − µj)2, (xj − µj)2} (3.30)

- and the supremum weighted distance subject to same constraints is:

sup
µ∈G

−
1

2
wT‖x− µ‖2=−

1

2

p∑
j

wj


0 if xj∈ [µj,µj]

minj

{
(xj − µj)2,

(xj − µj)2

}
otherwise

(3.31)

Proof 2 (Proof of Proposition 1) Since each element of the sum is positive, we
can interchange the infimum operator with summation, and calculate the supre-
mum of each component as follows:

inf
µ∈G

−
1

2

p∑
j

wj(xj − µj)2 ⇐⇒ −
1

2

p∑
j

wj sup
µj∈[µj,µj]

(xj − µj)2 (3.32)

where the supremum can be calculated as follows:
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sup
µj∈[µj,µj]

(xj − µj)2 = max
j

{(xj − µj)2, (xj − µj)2} (3.33)

In the second case and for similar reasons, we can also put the supremum operator
inside of summation and calculate of infimum value of each component:

sup
µ∈G

−
1

2

p∑
j

wj(xj − µj)2 ⇐⇒ −
1

2

p∑
j

wj inf
µj∈[µj,µj]

(xj − µj)2 (3.34)

where the infimum of squared subtraction of each element is:

inf
µj∈[µj,µj]

(xj − µj)2 =

{
0 if xj ∈ [µj,µj],
min{(xj − µj)2, (xj − µj)2} otherwise.

(3.35)

�

3.3 experimental setting

Now that we have computational means to learn and infer from our model,
we provide experimental results evaluating the performance of our differ-
ent imprecise Gaussian discriminant models (cf. Section 3.2).

3.3.1 How can we choose parameter ci?

The choice of parameters ci determines the amount of imprecision in our
posterior inference. It should be large enough to guarantee more reliable
predictions when missing information, but small enough so as to provide
informative predictions when possible. Therefore, in the absence of prior
information and for symmetry reasons, we will consider a symmetric box
around 0, as follows:

L
′
=
{
ζ ∈ Rk : ζi ∈ [−c, c], c > 0, i = {1, . . . ,p}

}
. (3.36)

In order to fix a value of c, there exist different approaches already men-
tioned in Section 4.3 of [Benavoli et al., 2014]. One can for example rely
on the rate of convergence of the lower and upper posterior expectations
[Walley, 1991]:

∀i
(
E[µi|xn, ζ] − E[µi|xn, ζ]

)
=
2c

n
−−−→
n→∞ 0 (3.37)

meaning that for small values of c, we would reach a faster convergence
of Equation (3.37) to a precise posterior inference (as precise models). A
value of c 6 0.75 is recommended [Benavoli et al., 2014, §4.3, §8]. However
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since we are in a classification problem, c will be selected through cross-
validation. More precisely, we restrict c to the interval [0.01, 5], discretised
into [0.01, 0.02, ..., 5], with the optimal value decided by cross validation
on the training samples. A typical empirical evolution of the accuracy
measures used in the next sections is shown in Figure 3.4 for the four IGDA
methods. It clearly shows that performances first increase in average with
imprecision, but then degrades as imprecision becomes too large.

3.3.2 Data sets and experimental setting

We perform experiments on 12 data sets issued from UCI machine
repository [Frank et al., 2010](cf. Table 3.2), following a 10×10-fold
cross-validation procedure. We aim to compare the performance of our
imprecise Gaussian classifier model approach with the existing precise
models (c.f. Table 3.1).

# name # instances # features # labels
a iris 150 4 3

b wine 178 13 3

c forest 198 27 4

d seeds 210 7 3

e glass 214 9 6

f ecoli 336 7 8

h dermatology 385 34 6

i vehicle 846 18 4

j vowel 990 10 11

k yeast 1484 8 12

l wine quality 1599 11 6

n wall-following 5456 24 4

Table 3.2: Data sets used in the experiments

Owing to small amounts of samples in some groups of observations (be-
longing to a specific label mk) of some data sets, the QDA model can suffer
from a phenomenon known as ill-posed covariance matrix (i.e. nmk < p),
and in such cases even calculating the pseudo-inverse of the estimated co-
variance matrix Σ̂mm using SVD method cannot solve the problem. This
affects the performance of our classifiers that significantly drop (e.g. in
Table 3.3, glass and yeast data sets). Therefore, in these specific cases,
we used a basic regularized method for the estimated covariance matrix
named Regularization QDA (or RQDA)[Friedman, 1989; Friedman et al.,
2001]:

Σmk(α) = αΣ̂mk + (1−α)I, (3.38)

where Σ̂mm is the estimated covariance for a group of observations, I a
identity matrix and α the regularization factor.
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With respect to ecoli data set, we consider appropriate to take the imS
and imL labels out of the data set, because they only have two instances by
label, making it impossible to perform the cross-validation procedure for
IQDA and QDA models, as we cannot calculate an empirical covariance
matrice with a single instance.

Comparing indeterminate predictions given in the form of a subset Ŷ

of plausible labels against just one determinate prediction ŷ is a hard prob-
lem that mostly depends on the circumstances or the context in which a
decision-marker may or may not accept partial predictions (or cautious
decision) instead of a unique, risky decision. A good evaluation should
reward cautiousness provided by Ŷ when it allows to include the true ob-
served label, but not so much as to systematically privilege imprecision
over precision. In other words, we need an evaluation metric that seeks
a compromise between cautiousness and informativeness. To do this, we
adopt the evaluation metric proposed and theoretically justified in [Zaf-
falon et al., 2012], called utility-discounted accuracy, which makes it possi-
ble to reward the imprecision in a more or less strong way. It is written as
follows:

u(y, Ŷ) =

{
0 if y /∈ Ŷ,
α
|Ŷ|

− α−1
|Ŷ|2

otherwise.
(3.39)

[Zaffalon et al., 2012] shows that a value α = 1 amounts to not reward
cautiousness and to confuse it with randomness, while α → ∞ does not
penalize non-informativeness, as the vacuous prediction (i.e. Ŷ = K )
would always get a full, guaranteed reward. We will use the usual values
u65 with α = 1.6 and u80 with α = 2.2 (as in [Yang et al., 2017]). To
have an intuition about these measures, let us simply recall that the u65
(u80) measure rewards a binary correct prediction with 0.65 (0.80), while
a purely random, non-cautious guesser picking one of the two possible
labels would reward it with 0.50. It therefore gives a “reward” of 0.15
(0.30) for rightful cautiousness.

3.3.3 Experimental results

The average results obtained according to u65 and u80 utilities, and the
average execution time to predict the label of a new unlabeled instance are
shown in Table 3.3. It should be noted that, to compute the predictor Ŷ,
we used an algorithm detailed in Section 3.6 and inspired by the work of
Nakahrutai et al.[Nakharutai et al., 2019].

It should be noted that while allowing for imprecision gives more flex-
ibility in terms of prediction than standard, precise methods, using u65
and u80 may either penalize or reward such flexibility in the final accuracy.
Indeed, if the imprecision is added to an instance for which the precise
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NDA INDA Avg.
Time# acc. u80 u65

a 95.07± 0.44 95.87± 3.58 95.77± 3.71 1.25× 10−3
b 97.70± 0.58 96.42± 22.99 96.34± 5.55 1.79× 10−3
c 95.26± 0.33 95.42± 3.78 95.42± 3.78 1.42× 10−3
d 90.38± 0.19 90.95± 3.25 90.57± 3.66 1.30× 10−3
e 43.92± 1.36 49.17± 13.83 52.30± 13.89 2.03× 10−3
f 82.39± 1.22 61.91± 22.96 61.87± 23.03 1.65× 10−3
h 85.52± 0.98 92.70± 3.37 92.38± 3.43 1.76× 10−3
i 45.63± 0.89 46.50± 9.71 42.68± 10.78 0.89× 10−3
j 67.26± 0.39 73.59± 3.67 68.57± 3.61 1.45× 10−3
k 43.36± 0.51 48.57± 5.67 48.49± 5.74 1.11× 10−3
l 54.83± 0.34 62.10± 4.44 58.52± 2.92 0.90× 10−3
n 52.55± 0.12 52.74± 1.35 52.64± 1.34 0.61× 10−3

avg. 71.16± 0.61 72.16± 8.21 71.30± 6.79 1.35× 10−3
(a) NDA versus INDA

EDA IEDA Avg.
Time# acc. u80 u65

a 91.60± 0.61 95.20± 5.56 93.40± 6.37 0.26× 10−3
b 46.65± 0.85 61.48± 6.11 51.45± 5.91 0.37× 10−3
c 81.09± 0.39 83.40± 5.15 80.27± 5.82 0.71× 10−3
d 90.38± 0.36 89.90± 4.19 89.48± 4.03 0.29× 10−3
e 46.26± 1.68 55.91± 5.91 47.31± 6.68 0.64× 10−3
f 42.59± 0.04 43.11± 11.44 41.93± 13.43 0.76× 10−3
h 51.22± 0.92 55.08± 9.56 52.99± 10.53 1.11× 10−3
i 28.03± 0.19 46.89± 2.10 36.93± 2.35 0.53× 10−3
j 58.08± 0.90 64.65± 5.50 60.73± 6.79 1.04× 10−3
k 31.27± 0.13 31.30± 2.40 31.28± 2.38 0.95× 10−3
l 19.72± 0.19 23.76± 1.84 22.06± 3.56 0.61× 10−3
n 57.90± 0.11 58.65± 1.36 58.26± 1.34 0.55× 10−3

avg. 53.73± 0.53 59.11± 5.09 55.51± 5.77 0.65× 10−3
(b) EDA versus IEDA

Table 3.3: Average utility-discounted accuracies (%) and time to predict in
seconds.

model was right, the imprecise model will be penalized, as the reward
will go from 1 (for the precise model) to a lower value given by Equa-
tion (3.39). On the contrary, if the imprecise prediction adds the true label
to a wrong precise prediction, the score of this prediction will go from
zero (for the precise model) to a positive value. Hence a higher accuracy
for u65 and u80 means that, on average, the additional imprecision (1) con-
cerns instances for which the precise method was wrong and (2) allows to
include the true class within the prediction. Of course, since u80 > u65, it
will in the majority of times achieve a higher accuracy, albeit not always
(e.g., data set glass for the INDA model, line e of Table 3.3a).

Given this, we can see that including some cautiousness can increase
our accuracies on most data sets, by picking the right values of c. This in-
crease is sometimes noticeable, for example in the vehicle (i), wine-quality
(l), wall-following (o) and vowel data sets (j). All of this, keeping a time
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LDA ILDA Avg.
Time# acc. u80 u65

a 97.96± 0.05 98.38± 0.21 97.16± 0.27 0.56
b 98.85± 0.36 98.99± 1.17 98.95± 1.26 1.49
c 94.61± 0.60 94.56± 1.08 94.05± 1.02 12.14
d 96.35± 0.25 96.59± 0.23 96.51± 0.23 1.50
e 62.15± 0.76 66.78± 0.73 58.87± 0.77 17.59
f 87.14± 0.37 89.74± 1.43 88.23± 1.42 12.40
h 96.58± 0.35 97.06± 0.62 96.94± 0.61 19.24
i 77.96± 0.48 81.98± 0.91 79.59± 0.82 3.10
j 60.10± 0.68 67.45± 0.48 62.41± 0.40 4.95
k 58.92± 0.17 61.50± 3.09 59.20± 3.37 10.81
l 59.25± 0.27 65.83± 0.26 60.31± 0.63 34.85
n 67.96± 0.07 71.34± 0.23 66.65± 0.19 10.77

avg. 79.82± 0.37 82.52± 0.87 79.91± 0.92 10.78
(a) LDA versus ILDA

QDA RQDA IQDA Avg.
Time# acc. acc. u80 u65

a 97.29± 0.44 96.66± 4.47 98.08± 0.41 97.13± 0.42 0.71
b 99.03± 0.45 98.89± 2.22 99.39± 0.14 99.09± 0.13 2.94
c 89.43± 1.34 97.47± 3.37 91.77± 1.38 88.90± 1.32 6.54
d 94.64± 0.47 94.29± 2.86 95.20± 0.26 94.72± 0.24 1.52
e 7.15± 2.39 51.40± 9.79 64.38± 1.36 58.36± 1.30 14.74
f 46.19± 2.97 88.25± 5.97 87.57± 3.99 87.12± 4.54 5.01
h 82.47± 0.42 96.92± 0.88 84.24± 0.87 84.05± 0.88 26.27
i 85.07± 0.86 85.11± 2.63 87.96± 0.34 86.13± 0.27 3.17
j 87.83± 0.49 87.07± 3.49 89.96± 0.67 88.40± 0.70 3.60
k 13.18± 2.37 56.27± 2.29 49.28± 5.02 48.34± 4.90 10.85
l 55.62± 0.47 55.79± 5.35 65.85± 0.55 60.36± 0.62 28.05
n 65.87± 0.17 70.56± 2.63 71.79± 0.12 69.75± 0.12 9.32

avg. 68.65± 1.07 81.56± 3.83 82.12± 1.26 80.20± 1.29 9.39
(b) QDA versus IQDA

Table 3.4: Average utility-discounted accuracies (%) and time to predict in
seconds.

execution reasonable in view of the problems to be solved (e.g. a non-
convex, NP-hard problem), and without an optimized implementation. As
expected, assuming independence between the features (i.e., diagonal co-
variance matrices) significantly reduces the computational time, making it
negligible, but overall reduces performances, as the assumptions are often
violated in a stronger way.

In order to highlight the major role of cautiousness of an imprecise
classifier model, we show in Figure 3.2c and 3.2b how, in the IRIS data set,
our IQDA and ILDA models create different areas of decision boundaries
(not to be confused with rejection area), where each area has a different
combination of subset of labels Ŷ ⊆ K , in contrast to precise classifier
model (LDA), in Figure 3.2a, where it creates one area per label. We can
clearly see that the two classifiers behave quite differently. In particular,
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(a) Precise boundary decision

(b) ILDA zone decision (c) IQDA zone decision
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Figure 3.2: Figure 3.2a shows how a precise model divides the instance
space in three single different zones by label (i.e {a}, {b}, {c}), the Fig-
ure 3.2b shows how an ILDA model divides the instance space in dif-
ferent zones as much as different combinations of a subset of labels (i.e
{a}, {b}, {c}, {a,b}, {b, c}, and so on), Figure 3.2c shows how IQDA model
can also divide in different zones with smooth curves instead, Figure 3.2d
shows IEDA model, and finally, Figure 3.2e shows INDA model.

ILDA (and IEDA) will induce regions delimited by piece-wise linear func-
tions, while IQDA (and INDA) will induces regions delimited by piece-
wise quadratic functions.

Also, in Figure 3.4, we show the evolution of utility-discounted accu-
racy (i.e. u65 and u80 of vowel dataset), with a standard deviation calcu-
lated by a 10-fold cross-validation on the training dataset, according to the
imprecision of estimators µ. As expected we notice that when c reaches
a too high value, the overall model performances decrease, as it becomes



3.3.3 experimental results 55

too imprecise with respect to our attitude towards cautiousness (modelled
through utility (3.39)). The rest of experiments are in Appendix A.1.
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Figure 3.3: Correctness of the different methods in the case of abstention
versus accuracy of their precise counterparts, only on those instances for
which an indeterminate prediction was given. Graphs are given for the
u80 accuracies.

Another desirable feature of an imprecise classifier is that it should ab-
stain (i.e. by providing a set of plausible choices) on hard instances, that is
the instances where the precise classifier makes an unusual high amount of
mistakes. In Figure 3.3, we verify that our imprecise classifiers follow this
desirable behaviour on most data sets, for the u80 measures (conclusions
for the u65 are similar, but not displayed to gain some space). Figure 3.3a
displays the percentage of time the true label is in the prediction of ILDA,
given that the prediction was imprecise, versus the accuracy of LDA on
those same instances. The same graphs for the QLDA, IEDA and INDA
methods are given by Figure 3.3b, Figure 3.3c and Figure 3.3d, respec-
tively. We notice that on those hard instances where precise classifiers are
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wrong, our imprecise classifiers successfully overcome them, getting the
ground-truth value into partial predictions (most often > 80%). A typical
and quite remarkable example of this is the dermatology data set (h) for
the linear case, where the accuracy on the imprecisely classified instances
drop to 30% for the precise classifier (to be compared to an average of
96% on all instances), while the imprecise classifier always includes the
true class. Moreover, the fact that u80 is higher indicates that the overall
amount of imprecision remains acceptable. Our approach therefore seems
to be able to well robustify the very simple, linear decision frontiers of the
ILDA models.
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Figure 3.4: Figures shows performance evolution with a standard devia-
tion region of three principales methods, (1) Figure 3.4d for ILDA model,
(2) Figure 3.4c for IQDA model, (3) Figure 3.4b for INDA model, and (4)
Figure 3.4a for IEDA model, w.r.t. utility-discount accuracy u65, u80 and c
tuning parameter on vowel dataset

Before considering some generalisation of the presented methods, we
would also like to mention that the imprecise probabilistic approach will in
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general induces decision frontiers that are different from classical rejection
rule. Figure 3.1b illustrates this well: rejection regions in a binary setting
are most often equivalent to require to predict {a,b} whenever P̂({a}|x) ∈
[0.5 − ε, 0.5 + ε] for some ε. This means that in the case of LDA, the
rejection regions will be delimited by two parallel lines, corresponding to
the iso-density points x for which P̂({a}|x) = 0.5− ε and P̂({a}|x) = 0.5+ ε.
In contrast, we can clearly see in Figure 3.1b that the boundaries are not
linear, but piece-wise linear.

3.4 imprecise prior marginal and generic loss functions

In this section, we will discuss two new variants of IGDA model: (1)
relaxing Assumption 2, i.e. PY := π̂, with the purpose of putting a set
of probability distributions PY instead, and (2) dealing with generic loss
functions instead of the classical `0/1 loss function. We will evaluate the
impact of this two new variants in our IGDA model in terms of added
computational complexity.

3.4.1 Imprecise prior marginal

The first extension we will consider is to make imprecise the marginal
distribution, considering a set PY rather than a precise distribution, in the
same vein as we have made the conditional distribution PX|Y imprecise.
For the time being, we will still work with the `0/1 loss function. Since the
conditionals are still independent of each other, solving the maximality
criterion amounts to solve Equation (3.23), that we recall here

inf
PY∈PY

P(X = x|Y = ma)P(Y = ma) − P(X = x|Y = mb)P(Y = mb) (3.40)

with ma �
PY|x

`0/1
mb if this is positive. This equation can be solved easily,

as it is a linear form in P(Y = ma),P(Y = mb), meaning that we can
either use linear programming over the constraints induced by PY , or
find the extreme point (e.g., by enumeration) of PY for which the solution
is obtained.

The problem then amounts to estimate PY . A quite popular choice
to do so is to use an Imprecise Dirichlet Model (IDM) [Bernard, 2005].
However, as Benavoli et al. have already mentioned in [Benavoli et al., 2014,
§4.2], the set of prior distributions of IDM does not correctly satisfy (P1)
Prior-invariance property and permutation invariance of near-ignorance
model. So, to remain consistent with our previous estimates, we retain a
solution proposed by Benavoli et al..

Let Y be a discrete random variable on a finite space of labels K with
probability distribution PY and let the parameters πmk ,∀mk ∈ K be the
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unknown non-negative chances, i.e. P(Y = mk). The Corollary 4.10 in
[Benavoli et al., 2014] proposes adding some constraints in the space L in
order not to favour some chances πmk over others. They then consider the
following set of prior distributions:

Pπ =

{
πζ1−1m1 πζ2−1m2 . . . π

−
∑K−1
i=1 ζi−1

mK , ‖ζ‖1 6 2c,
K−1∑
i=1

ζi ∈ [−c, c],K = |K |

}
.

(3.41)
It is also shown [Benavoli et al., 2014, Eq. 24] that, after combining this
set with the likelihood, the lower and upper expectations of the chances of
observing a given subset A of labels result in

E
[∑

mk∈A
πmk

∣∣∣n, ŷn

]
= min

(
1,
1

n

[∑
mk∈A

nk + c
])

:= PY(A), (3.42)

E
[∑

mk∈A
πmk

∣∣∣n, ŷn

]
= max

(
0,
1

n

[∑
mk∈A

nk − c
])

:= PY(A), (3.43)

where n is the total number of observations in the data set, i.e n = |D | = N.
We will then consider the probability set

PY =
{
P
∣∣PY(A) 6 P(A) 6 PY(A), ∀A ⊆ K

}
. (3.44)

Such a model, which corresponds to take a neighbourhood around the
empirical distribution using the total variation distance (i.e., L∞ norm) has
been recently investigated by Miranda et al. [Miranda et al., 2019], showing
for instance that it induced a 2-monotone lower probability, but was not
a specific case of probability intervals, in contrast with the IDM model.
Using this fact, we know that the result of Equation (3.40) will be obtained
by the Choquet integral, which results in this particular case in

inf
PY∈PY

P(X = x|Y = ma)P(Y = ma) − P(X = x|Y = mb)P(Y = mb)

⇐⇒ P(X = x|Y = ma)PY({ma}) − P(X = x|Y = mb)PY({mb})

⇐⇒ P(X = x|Y = ma)max
(
0,
na − c

n

)
− P(X = x|Y = mb)min

(
1,
nb + c

n

)

In particular, this shows that there would be no differences if we consid-
ered only the projections of PY over its singletons, which amounts to con-
sider the bigger set

P ′
Y=

{
P(Y=mk)=πmk

∣∣∣∣πmk ∈
[
max

(
0,
nk − c

n

)
, min

(
1,
nk + c

n

)]
, ∀mk∈K

}
.(3.45)
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3.4.2 Generic loss function

Function `0/1 is the default choice in classification problems, considering
that every mistake should be penalized in the same way. However, in many
practical problems different errors will have different impacts, and this is
especially true for sensitive applications in which imprecise probabilistic
approaches could be useful. This is why studying generic loss function is

useful. With such functions, Equation (2.10) can be written, ma �
PY|x

` mb

⇐⇒ inf
PX|m∗∈PX|m∗

PY∈PY

∑
mk∈K

(`(mk, mb) − `(mk, ma))P(Y = mk|X = x) > 0,

which, if we use the notation cb−amk := `(mk, mb) − `(mk, ma), gives

⇐⇒ inf
PX|m∗∈PX|m∗

PY∈PY

∑
mk∈K

cb−amk P(X = x|Y = mk)P(Y = mk) > 0 (3.46)

⇐⇒ inf
PY∈PY

∑
{k|cb−amk >0}

cb−amk P(X = x|Y = mk)P(Y = mk)

+
∑

{k|cb−amk 60}

cb−amk P(X = x|Y = mk)P(Y = mk) > 0 (3.47)

that uses the fact that the conditional probabilities P(X = x|Y = mk) are all
independent. As Equation (3.47) remains a linear form of the probabilities
P(Y = mk), it can be solved as previously, i.e., through the use of linear pro-
gramming or the identification of the extreme point for which the bound is
reached. If we now consider the specific credal set given by Equation (3.44)
and induced by the constraints (3.42)-(3.43), we still have that this induces
a 2-monotone lower probability, meaning that we can estimate (3.47) by
using the Choquet integral.

All these remarks show that making the marginal probabilities impre-
cise or considering generic loss functions preserves the model tractabil-
ity, as the computational complexity is not increased by much, especially
when PY has mathematical properties making computations easier (which
is luckily the case for most IP models over multinomial distributions).

3.5 synthetic data exploring non i .i .d. case

In this section, we perform some additional empirical experiments on syn-
thetic data sets, with the goal of exploring the capabilities of our approach
when training and test data are non identically distributed. Indeed, while
the imprecise probabilistic approaches presented in this chapter are not es-
pecially aimed to solve such an issue, they may be interesting to do so, as
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they are akin to distributionally robust approaches that consider imprecise
neighbourhoods around the empirical distribution on training data [Kuhn
et al., 2019].

Sections 3.5.1 and 3.5.2 respectively describe the procedures used to
generate the training and test sets of the experiments2, and Section 3.5.3
discusses the obtained results.

3.5.1 Synthetic datasets generation

We artificially generate 4 synthetic data sets, each one composed with
different number of features and labels (cf. Table 3.5), with the aim of
exploring certain special aspects related to the robustness and cautiousness
of prediction performed by (im)precise classifier models. These aspects
will be explained in detail in the following two subsections, but we first
explain how synthetic data sets Dl, ∀ l∈ {1, . . . , 4} are generated.

Simply put, for each data sets Dl, we generate one sub-population Dmk
l

per label mk, for which attributes follows a Gaussian distribution, that is

xi|yi=mk ∼ N(µmk ,Σmk).

We will consider different settings, going from the easiest classification
problems where all populations are spherical, homoscedastic, well sepa-
rated and where the number of features and classes are small, to the most
difficult ones where populations are mixed, heteroscedastic and with a
high number of features and classes.

To generate the distributions, we will use a ”root” label mr centered at
the origin, i.e., µmr = (0, . . . , 0), and will generate the other populations by
setting them in different quadrants. More precisely, we will have

xi|yi=mr ∼ N (µmr= 0,Σmr) (root sub-population),

∀mr 6= mk, xi|yi=mk ∼ N
(
µmr +ω

T
k ∗ ρqmr,mk ,Σmk

)
, ωk ∈ {−1, 1}p.

with all covariance matrix being equal in the homoscedastic case. We
require every ωi 6=ωj, so that populations do not overlap, and we define
the distance factors ρqmr,mk as

ρqmr,mk = 2 ∗
√
χ2p,q ∗ λmr , (Homoscedastic)

ρqmr,mk = 0.8 ∗
√
λmr ∗ χ2p,q + 0.8 ∗

√
λmk ∗ χ2p,q (Heteroscedastic)

where λmr contains the eigenvalue of covariance matrix Σmr and χ2p,q is q-
quantile of a Chi-square distribution with p-degree of freedom. Roughly

2 It is also available in R code on https://github.com/salmuz/synthetic noise igda

https://github.com/salmuz/synthetic_noise_igda


3.5.2 experiments setting with corrupted test data 61

speaking, 2 ∗
√
χ2p,q ∗ λmr can be thought as the length of the ellipsoid

covering q% of the population mr. This means that the higher is q, the
more separated are the classes. q can therefore be seen as a good proxy
to measure how difficult is a generated classification problem. In Table
3.5, we summarize 4 different synthetic data sets which will be used in
experiments where we will corrupt test instances by some noise.

Dataset #features #labels Σ∗ Variability q-CV
D1 2 3 sphere Homoscedastic 0.80

D2 2 5 ellipse Heteroscedastic 0.60

D3 3 5 ellipse Heteroscedastic 0.35

D4 6 8 ellipse Heteroscedastic 0.10

Table 3.5: Synthetic datasets used in the experiments

A user-friendly visualisation of three first synthetic datasets of Table 3.5
with confidence region at 90% is plotted in Figure 3.5.
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Figure 3.5: Synthetic datasets of three first dataset of Table 3.5.

3.5.2 Experiments setting with corrupted test data

The reliability of a classifier is directly related to the unknown underlying
distribution of the test data set (a.k.a. out-of-sample test data), which is
usually assumed to be the same one as for the training data set. However,
this assumption is unlikely to hold in many applications where models
may be applied to an evolving population, or to a population different
from the one it was initially trained for. As imprecise probabilistic ap-
proaches consider sets of distributions, we thought it interesting to study
their behaviour when the test data distribution is perturbed or modified.

We performed such a disturbance in two ways: (1) we move instances
of the test data set away from its center of inertia (i.e. µmk mean) using
some noise parameter, and (2) we randomly corrupt the initial inertia of
instances of the test data set with a random dispersion matrix generated
from a Wishart distribution.
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We will denote by Tεl and T
ψ
l the collections of perturbed test data of

data set Dl, respectively for the first and second disturbance. ε and ψ are
parameters within [0, 1], such that 0 corresponds to no disturbance and 1 to
a maximal disturbance. To ensure that our results are close to asymptotic
behaviours of classifiers, each test data set is composed of 104 instances.
We now define the disturbance procedures:

Shifting mean in this case, each test data set T (ε) of the finite collection
Tεl is corrupted with a ε noise parameter which basically works as a
force of attraction towards the center of gravity of the whole observed
population. So, the strategy here is to move away test instances
from its ground-truth sub-population towards the center of gravity,
corrupting their ground-truth gravitational center µmk as follows:

Tεl =
{
Tl(ε)

∣∣ ε = {0.00, 0.02, . . . , 0.98, 1.00}
}

,

Tl(ε) =


⋃

mk∈K

T mk

∣∣∣∣∣∣∣∣

∀mk ∈ K , T mk ∼ N(µ̃mk ,Σmk),

µ̃mk = (1− ε)µmk + εµG, µG =
1

K

K∑
k=1

µmk


where T mk denotes the corrupted test data of label mk with µ̃mk .

Noise dispersion in contrast to previous case, each test data set Tl(ψ) of
the finite collection T

ψ
l is corrupted with a ψ noise parameter which

basically disturbs the initial inertia of each sub-population with some
proportion ψ of the Γ random covariance matrix generated from a
Wishart distribution, as follows:

T
ψ
l =
{
Tl(ψ)

∣∣ ψ = {0.00, 0.02, . . . , 0.98, 1.00}
}

,

Tl(ψ) =

 ⋃

mk∈K

T mk

∣∣∣∣∣∣
∀mk ∈ K , T mk ∼ N(µmk , Σ̃mk),
Σ̃mk = (1−ψ)Σmk +ψΓ , Γ ∼ W(I,p)


where T mk denotes the corrupted test data of label mk with Σ̃mk .

Illustrations providing some intuition about those settings can be seen
in Figures 3.6a and 3.6b for the Shifting means and in Figures 3.6c and
3.6d for the Noise dispersion. In the first case, we can observe a strong
concentration of test instances around the gravity center of the whole pop-
ulation at higher values of ε, whereas in the second one, a steep dispersion
in test instances of each sub-population can be observed at higher values
of ψ.
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Figure 3.6: Noise-corrupted test instances of synthetic data sets (in black:
corrupted instances) Table 3.5.

While we can set the number of test instances high enough to get
asymptotic results, the number of training data should be kept reason-
able, otherwise we would just obtain perfect and precise estimations. Re-
sults should also be averaged over many training instances, so as to dis-
play average trends. For this purpose, we randomly generate 50 different
training data sets DN

l = {D1
l , . . . , D50

l } with a fixed number of instances
N= {10, 25, 50}, for every synthetic data set l described in Table 3.5.

Metrics used for evaluating the performance of classifiers are: u65 and
u80 utility-discounted accuracies (already been mentioned in 3.3.2), the
classical classification accuracy (acc) which determine the percentage of
correctly classified instances, and the set-accuracy (set) which is equal to 1
if ground-truth label y is in the cautious prediction y ∈ Y, and 0 otherwise.

In what follows, we will show the performance of imprecise and pre-
cise classifiers in function of each noise parameter and different synthetic
datasets (cf. Figures 3.8 and 3.10).

3.5.3 Experimental results on synthetic data sets

While we could have optimised hyper-parameter ĉ per training data set, in
order to not have an ”unfair” advantage compared to the precise approach,
we decided to fix the value of hyper-parameter ĉ = 0.75 as Benavoli et al
propose in [Benavoli et al., 2014, §8] (ĉ 6 0.75).
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3.5.3.1 Results on shifting mean

We first begin by providing in Figure 3.7 some insight on how corrupt
test instances behave when the number of instances of training data
set increases. For this purpose, we start fitting the (I)QDA model
on each random synthetic training data set of the collection of sets
{D10

2 , D25
2 , D50

2 , D100
2 } (with different number of instances each set), and

then evaluate the performance on Tε2 .
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Figure 3.7: Utility accuracies (%) with confidence intervals of the (I)QDA
model on corrupt test data sets Tε2 using 50 training data sets with different
number of instances, i.e. {D10

2 , D25
2 , D50

2 , D100
2 }.

The results show three important things:

(1) as the number of instances increase the performance of the precise
and imprecise classifiers converge to similar values (even if the im-
precise case achieves just slightly better results). This result also con-
firms what was mentioned in Remark 5, and is also partly due to c
remaining constant;

(2) the confidence intervals, given by coloured regions around the
curves, are considerably tight even when the evaluation of per-
formance has only been repeated 50 times for each set D∗2, and
finally

(3) we can see, in particular for a small number of training data (D10
2

or D25
2 ), that the imprecise approaches are quite robust to change

in the distributions. This is shown by the fact that the decrease of
performance when ε increases is much slower in the imprecise case
than in the precise one. This is mostly noticeable in D25

2 . In D10
2 , the

model is quite imprecise, hence very stable, and in D50
2 , D100

2 , the low
value of c makes the precise and imprecise models almost identical,
at least in terms of trends when the disturbance increases.

As the behaviour of the imprecise approach appears particularly inter-
esting for small training data sets (which is precisely the situations for
which imprecise methods are built for), in Figure 3.8 we show the results
for 10 instances on all data sets, each column corresponding to one data



3.5.3 experimental results on synthetic data sets 65

set, and each line to a particular model. The rest of experiments are in
Appendix A.2.
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(a) (Imprecise) Euclidian discriminant analysis
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(b) (Imprecise) Linear discriminant analysis
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(c) (Imprecise) Naive discriminant analysis
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(d) (Imprecise) Quadratic discriminant analysis

Figure 3.8: Utility accuracies (%) with confidence intervals on corrupt test
data sets Tεl . The first column (D10

1 ), the second column (D10
2 ), and so on.

In each row a different Gaussian classifier model is fitted.

Overall, the results obtained in the Figure 3.8 with respect to u65 and
u80 remains coherent with our previous findings, except for D10

1 where the
easiness of the data sets makes all methods alike.

3.5.3.2 Results on noise dispersion

In the same way as in the previous subsection, but with a different set of
corrupt test data set T

ψ
2 , we provide in Figure 3.9 some insight about the

performance of (I)QDA classifier fitted to each data set of the collection
{D10

2 , D25
2 , D50

2 , D100
2 }.
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Roughly speaking, we can see the same trends as in the case of the
shifted mean, except that now the most noticeable case is the one where
25 instances are used to train the model. Indeed, with 10 instances the
imprecise remains more robust than the precise one, as this latter does
decrease as noise increases, but the imprecise approach is too imprecise,
as we can guess from the big gap between the u80 and the set accuracy
(which almost always one) curves. The fact that the curves are noisier than
in the previous case can be easily explained by the fact that the disturbance
is here random, while the previous one was deterministic for each data set.
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Figure 3.9: Utility accuracies (%) with confidence intervals of the (I)QDA
model on corrupt test data sets T

ψ
2 using 50 training data sets with differ-

ent number of instances, i.e. {D10
2 , D25

2 , D50
2 , D100

2 }.

Similarly to the case of the shifting mean, we provide in Figure 3.10

the evolution of the curves for the different data sets, in the case of 10

instances. The results are similar to the previous case, with a precise model
that degrades more quickly than the imprecise approach as the level of
noise increases. This is especially clear for the third and fourth data sets,
for which the precise model is initially better than the imprecise ones, but
then become worse. The rest of experiments are in Appendix A.2

Overall, we can conclude that, although the imprecise method we have
presented is not specifically designed to deal with the problem of non
identically distributed data, it does provide some protection against it.
Fully studying such an aspect is out of the scope of the present chapter,
but these experiments are certainly encouraging enough to pursue in this
direction.

3.6 optimal algorithm for a cautious prediction using the

maximality criterion

In order to decrease the average number of computer operations per-
formed for getting the set-valued prediction ŶM, we propose a specific
algorithm very close in spirit to the one of Nakharutai et al. [Nakharutai
et al., 2019]. Indeed, rather than making the comparisons required by the
maximality criterion in any order, we focus on those classes that we know
to have high probability for the precise model. In particular, the first of
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(a) (Imprecise) Euclidian discriminant analysis
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(b) (Imprecise) Linear discriminant analysis
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(c) (Imprecise) Naive discriminant analysis
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(d) (Imprecise) Quadratic discriminant analysis

Figure 3.10: Utility accuracies (%) with confidence intervals on corrupt test
data sets T

ψ
l . The first column (D10

1 ), the second column (D10
2 ), and so on.

In each row a different Gaussian classifier model is fitted.

those class will be a maximal one, as it corresponds to a Bayes optimal
model for one of the probabilities included in our imprecise model.

Algorithm 1 details this idea, resulting in the set of maximal elements.
It should be noted that in the worst case, the complexity remains quadratic,
as all pairwise comparison will have to be made. Nevertheless, if ŶM

is small enough, we can expect a significant gain in performances (in
particular, if |ŶM| = 1, the method becomes linear and has to perform
|K | tests).

To know if such an algorithm is really interesting in our specific case,
we perform a comparison of the worst case (V1) that compute all lower and
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Algorithm 1: Maximal elements from maximality criterion

1

Require: K = {m1, . . . ,mK} . Set labels
Require: px = {pxm1

, . . . , pxmK
} . Precise probabilities of GDA

Require: π = {πm1
, . . . , πmK

} . Precise marginal probability PY

1: {pxm1
, . . . , pxmk

} := compute upper probabilities(K )
2: C = K , Z = ∅, Nopt = ∅
3: while |C \Z | > 0 . Subset of labels not yet compared

do
4: mz = argmaxmi∈C\Z pmi . Pick out the maximal element among a sub-set
5: px

mz
:= compute lower probabilities(mz)

6: Mopt = ∅
7: for mk ∈ C \mz do
8: if πmz

px
mz
− πmk

pxmk
> 0 . mz �M mk

then
9: Nopt = Nnopt ∪ mk . Subset of not-optimal labels

10: else
11: Mopt = Mopt ∪ mk . Subset of non-comparable labels for mz

12: end if
13: end for
14: Z = Z ∪ mz . Subset of label already compared with others
15: C = (Mopt ∪ mz) \Nopt . Partition of possible optimal labels in this step
16: end while
17: return C

upper probabilities necessary to perform the K(K− 1) comparisons for get-
ting the set-valued ŶM and then perform those comparisons, against the
proposed Algorithm 1 (V2), for every imprecise model seen in the Section
3.2 and for every data set of Table 3.2. In both cases, we use the optimal
imprecise model (i.e. ĉ) w.r.t. discount-utility measure u80 obtained in Sec-
tion 3.3. So we calculate the average empirical time complexity on the set
of prediction times obtained from applying both cases on 20% of the data
set, then we randomly repeat this experiment 10 times and we show the
overall mean and the percentage of increase (blue up-arrow) or decrease
(red down-arrow) in the Table 3.6.

Overall, the results obtained on the ILDA and IQDA models are quite
satisfying, as computational time decrease by >∼45% and >∼30%, respec-
tively. In contrast, the overall empirical time complexity of INDA and
IEDA models have increased by 6∼ 7% and 6∼ 30%, respectively. This is
due to the step of picking out the maximal element and the additional loop
added (while) in order to evaluate the maximality criterion. However, this
increased time does not significantly affect the inference time since it is in
milliseconds, whereas the reduction time obtained in (IQ)ILDA models is
clearly significant, as the involved NP-hard optimisation problems run in
seconds.
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# ILDA Inc.(%) IQDA Inc.(%)
a 0.72± 0.06 0.40± 0.05 44.44↑ 0.73± 0.06 0.45± 0.06 38.36↑
b 3.72± 0.46 1.63± 0.29 56.18↑ 3.71± 0.49 2.15± 0.38 42.05↑
c 8.78± 2.08 3.11± 2.17 64.58↑ 8.10± 0.87 4.01± 0.67 50.49↑
d 0.94± 0.08 0.38± 0.06 59.57↑ 1.92± 0.18 1.37± 0.17 28.65↑
e 21.56± 0.81 5.57± 0.46 74.17↑ 13.55± 2.50 7.96± 2.47 41.25↑
f 6.04± 1.65 3.00± 1.54 50.33↑ 6.04± 0.76 3.28± 0.62 45.70↑
h 11.31± 1.25 2.41± 0.31 78.69↑ 28.07± 1.80 16.31± 1.10 41.90↑
i 3.36± 0.32 1.09± 0.30 67.56↑ 3.36± 0.20 1.23± 0.10 63.39↑
j 4.35± 0.14 0.71± 0.03 83.68↑ 3.92± 0.24 0.57± 0.04 85.46↑
k 13.91± 2.94 2.66± 0.78 80.88↑ 10.74± 0.76 5.11± 0.64 52.42↑
l 38.60± 2.99 9.73± 0.68 74.79↑ 26.88± 2.30 8.18± 0.88 69.56↑
n 8.23± 0.39 3.04± 0.20 63.06↑ 9.83± 0.50 3.49± 0.27 64.49↑

(a) ILDA and IQDA models

# INDA×10−3 Inc.(%) IEDA×10−3 Inc.(%)
V1 V2 V1 V2

a 1.21± 0.02 1.27± 0.02 4.96↓ 1.19± 0.02 1.27± 0.05 6.72↓
b 1.44± 0.04 1.50± 0.12 4.17↓ 1.38± 0.02 1.78± 0.04 28.99↓
c 2.24± 0.01 2.24± 0.03 0.00 2.25± 0.04 2.41± 0.08 7.11↓
d 1.23± 0.03 1.31± 0.01 6.50↓ 1.35± 0.20 1.34± 0.04 0.74↑
e 2.62± 0.07 2.58± 0.04 1.53↑ 2.58± 0.02 2.71± 0.05 5.03↑
f 2.42± 0.13 2.46± 0.03 1.65↓ 2.37± 0.03 2.67± 0.07 12.65↓
h 4.36± 0.15 4.16± 0.05 4.59↑ 4.09± 0.06 4.07± 0.06 0.49↑
i 2.02± 0.07 2.03± 0.07 0.50↓ 2.07± 0.07 2.66± 0.03 28.50↓
j 4.73± 0.10 4.40± 0.07 6.98↑ 5.02± 0.08 4.50± 0.06 10.36↑
k 4.17± 0.04 4.05± 0.06 2.88↑ 3.97± 0.14 4.14± 0.10 4.28↓
l 2.79± 0.09 2.66± 0.10 4.66↑ 2.61± 0.05 2.62± 0.05 0.38↓
n 2.03± 0.07 2.06± 0.05 1.48↓ 2.15± 0.05 2.06± 0.06 4.18↑

(b) INDA and IEDA models

Table 3.6:A benchmark of average empirical time complexity in seconds of
two approach:(V1)worst case and(V2)Algorithm 1.

3.7 conclusion

In this chapter, we have generalized classical Gaussian discriminant mod-
els to the imprecise setting, mainly by allowing the estimated means of
the conditional Gaussian distributions to become imprecise. This was
achieved by a robust Bayesian procedure using sets of prior satisfying near-
ignorance properties.

We have explored the computational issues associated to the predic-
tions of such models, essentially showing that considering general covari-
ance matrices ended up in practically manageable yet computationally dif-
ficult to solve problems, while considering diagonal covariance matrices
essentially made the problem much easier to solve.

Experiments on various data sets show that the method is providing
quite satisfactory results, in the sense that the induced imprecision in the
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predictions is reasonable and mostly concerns instances that were wrongly
classified by the precise methods. We have also discussed some possible
extensions of our approaches to the case of imprecise priors and generic
loss functions, showing that such extensions would not add a prohibitive
computational cost.

Finally, some first experiments concerning the case of non-identically
distributed data suggest that investigating the potential of our model, and
of imprecise probabilistic models in general to solve this issue could be an
interesting topic. Indeed, imprecise models appear more robust to such
changes in the data, even when they do not seek to address this specific
issue.

A natural next step is to also make the covariance matrix estimate im-
precise, possibly leaving the mean estimate precise in a first step. Com-
putationally, this would be attractive, as the objective functions could be
made linear by fixing the mean and using an eigenvalue decomposition
of the covariance matrix [Bensmail et al., 1996]. The main problem would
then be to derive a principled approach (i.e., using near-ignorance prior)
that would deliver an easy-to-deal convex set of inverse covariance matri-
ces.



Part II

M U LT I - L A B E L C L A S S I F I C AT I O N

Part II of the manuscript is focused on the multi-label classi-
fication problem, starting in Chapter 4 with a brief reminder
focusing on cautious predictions.

In Chapter 5, we consider the problem of making distribution-
ally robust, skeptical binary inferences for the multi-label prob-
lem, or more generally for Boolean vectors. We study in partic-
ular the Hamming loss case, a common loss function in multi-
label problems, showing how skeptical inferences can be made
in this setting. We also provide a generalization of Binary rel-
evance model by using imprecise marginal distributions, and
experimental results.

In Chapter 6, we present two different ways to extend the classi-
cal multi-label chaining approach and a new dynamic, context-
dependent label ordering by using imprecise probability esti-
mates. The main reason one could have for using such esti-
mates are (1) to make cautious predictions when a high uncer-
tainty is detected in the chaining and (2) to make better precise
predictions by avoiding biases caused in early decisions in the
chaining. Our experimental results are encouraging when the
minimax approach adopts our new dynamic label ordering that
selects the labels with low uncertainty.





Chapter 4
Multi-label classification

“One should never try to prove any-
thing that is not almost obvious.”

—Alexander Grothendieck
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In contrast to multi-class problems where each instance is associated
to one label, multi-label classification (MLC) consists in associating an
instance to a subset of relevant labels from a set of possible labels. That
is why MLC can be considered a generalization of traditional multi-class
problems, as well as a special case of the multi-task learning.

Such problems can arise in different research fields, such as the classifi-
cation of proteins in bioinformatics [Tsoumakas et al., 2007], text classifica-
tion in information retrieval [Fürnkranz et al., 2008], object recognition in
computer vision [Boutell et al., 2004], and so on.

In this chapter, we introduce a light but necessary background knowl-
edge about multi-label classification problems in the precise probabilistic
setting. Such backgrounds are necessary, but not essential, to understand
the next two chapters1.

In Section 4.1, we introduce the problem setting of multi-label problem
using precise probabilities as well as a brief description of problems which
we will tackle in the next chapters.

In Section 4.2, we briefly introduce the different kinds of losses exist-
ing in the multi-label setting, and finally in Section 4.3, we present the
few works we know of dealing with cautious multi-label classification,

1 Someone with knowledge in multi-label problems can directly go to Chapter 5 or 6
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whereby cautious we mean that we may abstain from predicting one la-
bel of the set of relevant labels by providing a set-valued predictions.

4.1 multi-label problem setting

In multi-label problem, an instance x of an input space X =Rp is no longer
associated with a single label mk of an output space K = {m1, . . . , mm}, but
with a subset of labels Λx ⊆ K often called the set of relevant labels while
its complement K\Λx is considered as irrelevant for x. Let Y = {0, 1}m be
a m-dimensional binary space and y = (y1, . . . ,ym) ∈ Y be any element
of Y such that yi = 1 if and only if mi ∈ Λx. (Example 4.1).

X1 X2 X3 X4 y1 y2 y3
107.1 25 Blue 60 1 0 0

-50 10 Red 40 1 0 1

200.6 30 Blue 58 1 1 0

107.1 5 Green 33 0 1 0

. . . . . . . . . . . . . . . . . . . . .

Table 4.1: An example of a multi-label data set

From a decision theoretical approach (c.f. Figure 1.1), the goal of the
multi-label problem is the same as the usual classification problem (c.f.
Definition 1). This goal is to learn a classifier h : X → Y that generalizes
the behaviour of the empirical evidence D in the sense of minimizing the
risk of getting missclassification with respect to a specified loss function
`(·, ·)

R`(Y,h(X)) = arg min
h

EX×Y [`(Y,h(X))] . (4.1)

where the classifier h outputs a m-dimensional vector as predictive output
for a given new instance x

ŷ = h(x) = (h1(x), . . . ,hm(x)). (4.2)

Under similar conditions presented in Definition 1, this minimization can
also be expressed as the minimization of conditional expected risk of a
given unlabeled instance x (cf. [Dembczyński et al., 2012, eq. 3])

h(x) = arg min
y∈Y

EP̂Y|x
[`(y, ·)] = arg min

y∈Y

∑
y ′∈Y

P̂(Y=y ′|X=x)`(y ′,y). (4.3)

Moreover, in an equivalent way to what was presented in Definition 2, the
maximum element of Equation (4.3) can be obtained picking it from the
strict total order relation � over Y ×Y , where y1 � y2 (y1 is preferred to
y2) if
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EP̂Y|x

(
`(y2, ·) − `(y1, ·)

)
= EP̂Y|x

(
`(y2, ·)

)
− EP

(
`(y1, ·)

)
> 0. (4.4)

In the state-of-the-art [Zhang et al., 2013; Mena et al., 2016; Moyano
et al., 2018; Read et al., 2019], we can find a variety of approaches which
can be divided in; (1) methods focusing on the reduction of the time com-
plexity of Equation (4.3) with respect to different types of loss functions
and assuming that the probability distribution P̂ is known, or (2) methods
focusing on the optimisation of Equation (4.1) in order to get an estimated
probability distribution that generalizes well beyond the observations of a
training data set over a specified loss function.

Concerning to the second approach, obviously, the minimisation of
Equation (4.1) will be untreatable if we approach it as a classical classi-
fication issue, since the output space Y grows up exponentially over the
number of classes in K , i.e. 2|K |. Among other things, the probability
of each distinct output would be too small and hard to estimate (as some
outputs may even be never observed). Such an approach is known as label
powerset (LP) method [Boutell et al., 2004] and is tailored to minimize the
subset zero-one loss `0/1. One way to circumvent this issue is to adopt
decomposition techniques [Tsoumakas et al., 2007; Menon et al., 2019],
in which the initial difficult problem is split into a set of simpler prob-
lems [Zhang et al., 2018] (e.g. Binary relevance), or the classifier-chains
approach which computes the full joint probability estimate of a greedy
way. The first approach is briefly discuss in Section 4.2.

In this part of the manuscript, we will contribute in each of such ap-
proaches, but on an imprecise probability setting. In Chapter 5, we focus
on reducing the time complexity of criterial presented in Chapter 2 on
different settings, and in Chapter 6, we focus on learning an imprecise
classifier-chains method based on different strategies and applying to the
NCC as base classifier.

Concerning the precise learning approaches used and extended in this
manuscript, namely classifier-chains [Read et al., 2011] and probabilistic
classifier-chains [Cheng et al., 2010] approaches, we prefer to recall and
detail of each one of them in its respective chapter (Chapter 6 and 5, re-
spectively) to make the reading easier.

4.2 loss functions

In contrast to the multi-class (or binary) classification problem, where the
usual metrics measure the loss incurred from a given inferred univariate
response Y, the multi-label classification problem is confronted not to mea-
sure only a univariate response but a set-valued responses Y = {Y1, . . . , Ym}
(or multivariate responses), so that these usual metrics are not directly tai-
lored at all (except for the zero/one loss, `0/1).
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In the state-of-the-art, a variety of loss functions [Gibaja et al., 2014;
Dı́ez et al., 2015] has been proposed to satisfy different real-application
problems modelled as a multi-label classification. Depending on the na-
ture and structure of such loss functions (e.g. linear as Hamming or non-
linear as F-measure over labels), Equation (4.3) can be simplified according
to whether or not its optimisation requires the knowledge of the full joint
probability distribution.

Such loss functions can be classified in two different kinds, so-called
label-wise: (1) decomposable and (2) non-decomposable [Dembczyński et
al., 2012].

1. Decomposable metrics roughly speaking, a decomposable loss is
the one which can evaluate the incurred loss of each label Yi “inde-
pendently” from all other ones, so that it can be expressed in the form

`(y,h(X)) =
m∑
i=1

`i(yi,hi(X)), (4.5)

where `i : {0, 1}2 → R is a binary loss function over i-th label. A
particular case is the Hamming loss (c.f. Equation (5.3)) with an
image set {0, 1} instead of R (i.e. zero-one loss function `0/1), but
also precision@k, DCG@k, squared-error label-wise, as well as oth-
ers [Dembczyński et al., 2012; Jasinska Kalina, 2018; Vu-Linh Nguyen,
2019].

It is well known that the optimization of Equation (4.3) on these types
of losses generate an “optimal” (prediction) decision requiring only
the knowledge of the conditional marginal (single-label) distribution.
In other words, the optimal binary vector prediction ŷ on these losses
is the one for which ŷj = 1 if Px(Yj = 1) > 0.5 and ŷj = 0 otherwise.

However, as will be seen later on in Chapter 5, in an imprecise prob-
abilistic setting it is not enough to know the conditional marginal
distribution, but the full joint probability distribution to get an “opti-
mal” set of predictions (i.e. a set of binary vectors), even in the case
of decomposable losses.

2. Non-decomposable metrics in contrast to previous metrics, non-
decomposable loss does not allow to evaluate the incurred loss in-
dependently. Roughly speaking, these losses can account for label-
dependencies [Dembczyński et al., 2012], which implies that it is nec-
essary to know in some case the partial or full conditional probability
distribution P̂Y |x. Evidently, it computationally quickly becomes un-
tractable, due to the fact that the output predictive space increases
exponentially with m (e.g. |Y | = 32768 for m = 15)
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Among such losses, we have the well-known F-measure and Jaccard
losses, given in Equation 4.6 and 4.7, respectively.

`Fβ(y, ŷ) = 1−
(1+β2)

∑k
i=1 yiŷi

β2
∑k
i=1 yi +

∑k
i=1 ŷi

(4.6)

`J(y, ŷ) = 1−
∑k
i=1 yiŷi∑k

i=1 yi +
∑k
i=1 ŷi −

∑k
i=1 yiŷi

(4.7)

Despite the inherent complexity of these sophisticated losses, [Dem-
bczynski et al., 2011] proposed for the F-measure loss an exact algo-
rithm of complexity O(m3) assuming that the probability distribution
P̂Y |x is known. [Ramón Quevedo et al., 2012], on the other hand, pro-
posed for the Jaccard loss an algorithm of complexity O(m2) under
the assumption of label independence.

Owing precisely to the non-decomposition of these losses, proposing
procedures in an imprecise probabilistic setting becomes very hard
and challenging. Indeed, we have to consider the fact that with
general sets and in the worst of cases, Equation (4.8)

y1 �P
` y

2 ⇐⇒ EP [`Fβ(y
2,y) − `Fβ(y

1,y)] (4.8)

remains with a time complexity O(22m). Solving such challenges,
even approximatively, is one of our future works, for instance by
using a truncated formulation of Harmony mean (F-measure) with
Bernstein functions [Qi et al., 2017].

4.3 cautious models in multi-label problems

In the literature, there are only a few works on multi-label classification
producing cautious predictions, they can be classified as

1. Partial rejection rules. an interesting work is the one of Pillai
et al. [Pillai et al., 2013], in which the decision of abstaining is based
on threshold parameters adapted on the F-measure as a performance
metric.

2. Partial abstention. a new approach of abstaining has recently been
proposed in [Vu-Linh Nguyen, 2019] based on a generalization of loss
function, adding it a new term in order to penalize the abstention, as
follows:

L(y, ŷ) = `(y, ŷ) + f(|A(ŷ)|) (4.9)

where `(·, ·) is the usual loss function and f(·) is the penalty for ab-
staining on A(ŷ) the set of indices i for which yi = ∗. However, this
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penalty function should always be chosen according to the context
problem, making it strongly dependent on the data set and impos-
ing a restriction even if [Vu-Linh Nguyen, 2019] recommended two
types of functions in experiments section. In contrast, our approach
presented in Chapter 5 is based on axiomatic bases and theoretical
justifications [De Finetti, 1937; Walley, 1991] to model uncertainties,
and does not require an adaptation of a loss function (it does, how-
ever, require to settle the amount of imprecision).

3. Indeterminate classification. [Destercke, 2014] proposed two
outer approximations for the Hamming and Ranking loss functions,
respectively, which have a polynomial time complexity and are
therefore efficient in the inference step. Albeit these approximations
are efficient, we have been able to prove that in the Hamming case,
its approximation is based on the assumption of label independence,
and that in the general case, it can degrade or become a gross
approximation if the number of labels is huge, m > 14.

Finally, Antonucci and Corani [Antonucci et al., 2017]’s work is closer
to our framework since it also uses credal sets to quantify the un-
certainty, although it focuses on a specific model and another loss
function (the zero/one loss). This work might be compared to our
approach presented in Chapter 6, since both are focused in the ze-
ro/one loss, in one of our future works.

4.4 summary

This chapter has provided a brief reminder of the multi-label setting and
its whereabouts, with a light focus on cautious predictions in this setting.
Next chapters will detail our contributions.



Chapter 5
Distributionally robust, skep-

tical binary inferences in multi-

label problems

“Der Mensch kann wohl tun was er
will, aber er kann nicht wollen was er
will.”

—Arthur Schopenhauer
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Considering all possible subsets of labels as possible predictions make
the estimation and decision steps of a learning problem significantly more
difficult: partial observations are more likely to occur, especially when the
number of labels increases, and the output space over which the probabil-
ity needs to be estimated grows exponentially with the number of labels.

This means that in some applications where guaranteeing the robust-
ness and reliability of predictions is of particular importance, one may con-
sider being cautious about such predictions, by predicting a set of possible
answers rather than a single one when uncertainties are too high.

In this chapter, we consider the problem of making such set-valued
predictions by performing skeptic inferences when our uncertainty is de-
scribed by a set of probabilities (the more uncertainties, the bigger the
set). By skeptic inference, we understand the logical procedure that con-
sists, in the presence of multiple models, to accept only those inferences
that are true for every possible model. Such approaches are different from
thresholding approaches [Vu-Linh Nguyen, 2019; Pillai et al., 2013], and
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are closer in spirit to distributionally robust approaches, even if these later
typically consider precise, minimax inferences, that are cautious yet not
skeptic [Hu et al., 2018; Chen et al., 2018]. We also make no assumptions
about the considered set of probabilities, thus departing from usual distri-
butionally robust approaches, that typically consider precise predictions,
or from existing works dealing with sets of probabilities and multi-label
problems [Antonucci et al., 2017], that considered specific probability sets
and zero/one loss function (seldom used in multi-label problems).

Section 5.1 introduces some basic notations that we will use more
specifically in this chapter, and gives the necessary reminders about
skeptic inferences made with sets of probabilities defined on (binary) tree
structures.

In Section 5.2, we provide novel theoretical results, coupling the ham-
ming loss and the maximality decision criterion, showing that our exact
procedure for making skeptical inferences has an almost linear time com-
plexity with respect to the size of the output space of the multi-label clas-
sification. Furthermore, we show that under some specific independence
conditions, the set-valued predictions induced by the E-admissible deci-
sion criterion match perfectly with the one of the maximality. Finally,
we provide additional results on remaining criterial introduced in Sec-
tion 2.1.2.

Finally, in Section 5.3, we perform a set of experiments on simulated
and real data sets. The first set aims to study the exactness of the exist-
ing outer-approximation [Destercke, 2014] against our exact optimal pro-
cedure. The second aims to make a first study of the behaviour of the
skeptical inference against its precise counterpart; (1) under an assump-
tion of independence as specified in Section 5.2.2 and (2) on missing and
noisy labels.

5.1 problem setting

We denote by Y = (Y1, . . . , Ym) the random binary vector over Y . Given a
subset I ⊆ {1, . . . ,m} of indices, we denote by YI the space of binary vec-
tors over those indices, and by YI and Y−I the marginals of Y over these
indices I and over the complementary indices {1, . . . ,m} \I , respectively.
In particular, Y{i} will denote the marginal random variable over the ith
label. Similarly, we will denote by yI the values of a vector restricted
to elements indexed in I , and by bI a particular assignment over these
elements. The associated marginal probability will be

Px(bI ) =
∑

y∈Y ,yI =bI

Px(Y = y).
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We will also consider the complement of a given vector or assignment over
a subset of indices. These will be denoted by bI and bI , respectively.

Given two vectors y1 and y2, we will denote by Iy1 6=y2 := {i ∈
{1, . . . ,m} : y1i 6= y2i } the set of indices over which two vectors are different,
and similarly by Iy1=y2 := {i ∈ {1, . . . ,m} : y1i = y

2
i } the sets of indices for

which they will be equal.

Example 8 Consider the probabilistic tree developed in Figure 5.1 defined over
Y = {0, 1}2 describing a full joint distribution over two labels. In such trees, the
probability of any vector y is simply the product of the probabilities along its path.
We also have that the partial vector (·, 1) has probability

P((·, 1)) = P((0, 1)) + P((1, 1)) = 0.5 · 0.2+ 0.5 · 0.7 = 0.45.

y1 = 1
(y1=1,y2=1)0.7

(y1=1,y2=0)0.3
0.5

y1 = 0
(y1=0,y2=1)0.2

(y1=0,y2=0)0.8

0.5

Figure 5.1: Probabilistic binary tree of two labels

In the sequel of this chapter, we will use such trees to illustrate our results,
replacing the precise probabilities on the branches by intervals. An example will
be provided later. The resulting set of probabilities over Y will then simply be the
set of all joint probabilities obtained by taking precise values within those intervals.

As in this chapter we are interested in making set-valued predictions
for the multi-label problems, we will use the notation Y ⊆ Y for generic
subsets of Y . We will use the notation Y ∗ = {0, 1, ∗}m for the specific
subsets induced by partially specified binary vectors y∗ ∈ Y ∗, where the
symbol ∗ stands for a label on which we abstain. Denoting by I ∗ the
indices of such labels, we will also use y∗ and Y ∗ for the corresponding
family of subsets over Y , i.e.,

y∗ := {y ∈ Y : ∀i 6∈ I ∗,yi = y∗i }.

Such subsets are indeed often used to make partial multi-label predictions,
and we will refer to them on multiple occasions, calling them partial vec-
tors. However, using only subsets within Y ∗ may be insufficient if one
wants to express complex partial predictions. For instance, in the case
where m = 2, the partial prediction Y = {(0, 1), (1, 0)} cannot be expressed
as an element of Y ∗, as approximating Y with an element of Y ∗ would be
empty.
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5.1.1 Skeptic inferences with distribution sets

In this chapter, we assume that our uncertainty is described by a convex
set of probabilities P , defined over Y (for more details we refer to Sec-
tion 1.3).

skeptic inference and decision Once our uncertainty is de-
scribed by a credal set P , the next step according to the scheme presented
in Figure 1.1 is to deliver an optimal prediction (or set-valued ones),
depending on how large is the credal set P .

When our credal set is reduced to a precise estimate P̂, it is based on
the decision theoretic approach already defined in Section 4.1 (c.f. Defi-
nition 1). Otherwise, we will consider in this chapter two main decision
rules among those introduced in Section 2.1.2, that may return more than
one decision in case of insufficient information: E-admissibility and max-
imality. We quickly recall these rules and for further details, we refer to
Definitions 7 and 5, respectively.

ŶE
`,P =

{
y ∈ Y

∣∣∣∣∃P∈P s.t. ∀y ′ ∈ Y , EP [`(y, ·)]<EP

[
`(y ′, ·)

]}
(5.1)

ŶM
`,P =

{
y∈Y

∣∣∣∣∀P∈P , 6 ∃y ′∈Y :y ′�P
` y, s.t. EP

[
`(y, ·) − `(y ′, ·)

]
>0

}
(5.2)

Also, we recall that computing ŶE
`,P and ŶM

`,P can be computationally
significantly harder than the precise case, regardless of the functional `
chosen. For instance, obtaining ŶM

`,P may require at worst to perform
O(22m) comparisons (c.f. Section 2.1.2.2), which can be intractable for
extreme multi-label problems, with |Y | > 103.

Example 9 Figure 5.2 illustrates the computation of an expected loss in the case
of a probabilistic tree and the 0/1 loss function (`(y ′,y) = 1 if y 6= y ′, 0
else), when comparing the two items y ′ = (0, 1) and y ′′ = (1, 0). The global
expected value is then retrieved by computing local expectations recursively at
each node, starting from the leaves of the tree to get at the root. In this case, we
have that (1, 0) �P

`0/1
(0, 1), since the expectation of the difference `0/1 ((0, 1), ·)−

`0/1 ((1, 0), ·) is positive.
Figure 5.3 pictures an imprecise probabilistic tree for the same situation, where

the probabilities in each branch are replaced by intervals (that in the binary case
are sufficient to represent any convex set). The computation of the corresponding
lower expectation is done in the same way as in the precise case, starting from
the leaves and picking the right interval bounds to obtain lower values of the local
expectations. In the example, we still have that (1, 0) �P

`0/1
(0, 1), as the final

lower expectation is positive.
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y1 = 1

(y1=1,y2=1)0.7

(y1=1,y2=0)0.30.5

y1 = 0

(y1=0,y2=1)0.2

(y1=0,y2=0)0.8

0.5

EP = 0.3 · 1 = 0.3

EP = 0.2 ·−1 = −0.2

EP = 0.5 ·−0.2+ 0.5 · 0.3 = 0.05

`0/1 ((0, 1), ·) − `0/1 ((1, 0), ·) =
0

−1

1

0

Figure 5.2: Probabilistic tree and expected loss

y1 = 1

(y1=1,y2=1)[0.613, 0.713]

(y1=1,y2=0)[0.287, 0.387][0.456, 0.556]

y1 = 0

(y1=0,y2=1)[0.138, 0.238]

(y1=0,y2=0)[0.762, 0.862]

[0.44
4, 0.544]

EP = 0.287 · 1

EP = 0.238 ·−1

EP = 0.544 ·−0.238+ 0.456 · 0.287 > 0

`0/1 ((0, 1), ·) − `0/1 ((1, 0), ·) =
0

−1

1

0

Figure 5.3: Imprecise probabilistic tree and lower expected loss

All of this means that simply enumerating elements of Y is not practi-
cally possible, and other strategies need to be adopted. In the next section,
we show that in the case of Hamming loss, we can use efficient algorith-
mic procedures to perform skeptic inferences, both for general sets P and
for specific probability sets induced from binary relevance models. We
also show that some previous results giving rough outer-approximations
of skeptic inferences in the general case turn out to be exact for such binary
relevance models.

5.2 skeptic inference for the hamming loss

The hamming loss, that we will denote `H, is a commonly used loss in
multi-label problems. It simply amounts to compute the Hamming dis-
tance between the ground truth y and a prediction ŷ, that is

`H(ŷ,y) =
m∑
i=1

1(ŷi 6=yi) = |Iŷ6=y| (5.3)
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where 1(A) denotes the indicator function of the event A. Note that in
contrast with the subset loss `0/1(ŷ,y) = 1(ŷ6=y) , the Hamming loss differ-
entiates the situations where only some mistakes are made from the ones
where a lot of them are made (being maximum when ŷ is the complement
of y).

In the case of precise probabilities, it is also useful to recall that the
optimal prediction for the Hamming loss [Dembczyński et al., 2012], i.e.
the vector ŷ`H,P satisfying Equation (1.6) is

ŷi,`H,P =

{
1 if P(Y{i} = 1) > 1

2 ,
0 else.

(5.4)

When considering a set P of distribution, one is immediately tempted to
adopt the following partial vector as a solution:

ŷ∗i,`H,P =


1 if P(Y{i} = 1) > 1

2 ,
0 if P(Y{i} = 0) > 1

2 ,
∗ if 12 ∈ [P(Y{i} = 1),P(Y{i} = 1)].

(5.5)

It has however been proven that ŷ∗`H,P is in general an outer-
approximation of ŶE

`,P and ŶM
`,P , thus only providing a quick heuristic to

get an approximate answer [Destercke, 2014].
The next sections study the problem of providing exact skeptic infer-

ences, first for any possible probability set P , then for the specific case
where P is built from marginal models on each label, that corresponds to
binary relevance approaches.

5.2.1 General case

In this section, we demonstrate that for the Hamming loss, we can use in-
ference procedures that are much more efficient than an exhaustive, naive
enumeration. Let us first simplify the expression of the expected value.

Lemma 1 In the case of Hamming loss and given y1,y2, we have

E
[
`H(y

2, ·) − `H(y1, ·)
]
=

m∑
i=1

P(Yi = y
1
i ) − P(Yi = y

2
i ) (5.6)

Proof 3 (Proof of Lemma 1)
Let us first develop E

[
`H(y

2, ·) − `H(y1, ·)|X = x
]
:

∑
y∈Y

(
m∑
i=1

1yi 6=y2i
−

m∑
i=1

1yi 6=y1i

)
Px(Y = y)



5.2.1 general case 85

∑
y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

ym∈{0,1}

(
m∑
i=1

1yi 6=y2i
−

m∑
i=1

1yi 6=y1i

)
Px(Y = y)

For a given k ∈ {1, . . . ,m}, let us consider the rewriting

m−1︷ ︸︸ ︷∑
y1∈{0,1}

∑
y2∈{0,1}

. . .
∑

ym∈{0,1}


 ∑
yk∈{0,1}

(
m∑
i=1

1yi 6=y2i
−

m∑
i=1

1yi 6=y1i

)
Px(Y = y).

(5.7)

Developing the sum between brackets, we get

∑
yk∈{0,1}

m∑
i=1

1yi 6=y2i
Px(Y = y) −

∑
yk∈{0,1}

m∑
i=1

1yi 6=y1i
Px(Y = y) (by linearity) (5.8)

Developing again the left term, we obtain

∑
yk∈{0,1}

m∑
i=1

1yi 6=y2i
Px(Y = y) =

∑
yk∈{0,1}

(
1y1 6=y21

+ 1y2 6=y22
+ · · ·+ 1ym 6=y2m

)
Px(Y = y)

= 1y1 6=y21

∑
yk∈{0,1}

Px(Y
k = yk) + · · ·+

∑
yk∈{0,1}

1yk 6=y2k
Px(Y

k = yk)+

· · ·+ 1ym 6=y2m
∑

yk∈{0,1}
Px(Y

k = yk)

= 1y1 6=y21
Px(Y{−k}) + · · ·+

∑
yk∈{0,1}

1yk 6=y2k
Px(Y

k = yk)+

· · ·+ 1ym 6=y2mPx(Y{−k})

=
∑

yk∈{0,1}
1yk 6=y2k

Px(Y
k = yk) +

m∑
i=1,i 6=k

1yi 6=y2i
Px(Y{−k}),

where

Px(Y
k = yk) := Px(Y1, . . . , Yk = yk, . . . , Ym) (5.9)

and
Px(Y{−k}) := Px(Y1, . . . , Yk−1, Yk+1, . . . , Ym) (5.10)

Similarly, we get for the right term

∑
yk∈{0,1}

m∑
i=1

1yi 6=y1i
Px(Y = y) =

∑
yk∈{0,1}

1yk 6=y1k
Px(Y

k = yk) +

m∑
i=1,i 6=k

1yi 6=y1i
Px(Y{−k})

We put back these rewritten sums in Equation (5.7)
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m−1︷ ︸︸ ︷∑
y1∈{0,1}

∑
y2∈{0,1}

· · ·
∑

ym∈{0,1}

[ ∑
yk∈{0,1}

1yk 6=y2k
Px(Y

k = yk) −
∑

yk∈{0,1}
1yk 6=y1k

Px(Y
k = yk)

+

m∑
i=1,i 6=k

1yi 6=y2i
Px(Y{−k}) −

m∑
i=1,i 6=k

1yi 6=y1i
Px(Y{−k})

]
=

∑
y∈Y

(1yk 6=y2k
− 1yk 6=y1k

)Px(Y = y) +

m−1︷ ︸︸ ︷∑
y1∈{0,1}

· · ·
∑

ym∈{0,1}




m∑
i=1,i 6=k

1yi 6=y2i
− 1yi 6=y1i


Px(Y{−k})

(5.11)

The left term can be reduced in the following way:∑
y∈Y

(1yk 6=y2k
− 1yk 6=y1k

)Px(Y = y) =
∑
y∈Y

1yk 6=y2k
Px(Y = y) −

∑
y∈Y

1yk 6=y1k
Px(Y = y)

= Px(Yk 6= y2k) − Px(Yk 6= y1k)
= Px(Yk = y

1
k) − Px(Yk = y

2
k)

since we have Px(Yk 6= yk) = 1−Px(Yk = yk). We can apply the same operations
we just did on the right term of Equation (5.11), and do so recursively, to finally
obtain

m∑
i=1

P(Yi = y
1
i ) − P(Yi = y

2
i ) (5.12)

�

If we consider a set of indices Iy1=y2 on which the Equation (5.6) is
cancelled, it can be rewritten∑

i∈I
y1 6=y2

P(Yi = y
1
i ) − P(Yi = y

2
i ). (5.13)

The next proposition shows that this expression can be leveraged to per-
form the maximality check of Equation (5.2) on a limited number of vec-
tors.

Proposition 2 For a given set I of indices, let us consider an assignment aI

and its complement aI . Then, for any two vectors y1,y2 such that y1I = aI ,
y2I = aI and y1−I = y2−I , we have

y1 �M y2 ⇐⇒ inf
P∈P

∑
i∈I

P(Yi = ai) >
|I |

2
(5.14)

Proof 4 (Proof of Proposition 2) Using Equation (5.13), one can readily see
that
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y1 �M y2 ⇐⇒ inf
P∈P

∑
i∈Iy1 6=y2

P(Yi = y
1
i ) − P(Yi = y

2
i ) > 0 (5.15)

⇐⇒ inf
P∈P

∑
i∈I

P(Yi = ai) − P(Yi = ai) > 0 (5.16)

Accounting for the fact that P(Yi = ai) + P(Yi = ai) = 1, we get

⇐⇒ inf
P∈P

∑
i∈I

2P(Yi = ai) − 1 > 0 (5.17)

⇐⇒ inf
P∈P

∑
i∈I

P(Yi = ai) >
|I |

2
(5.18)

�

In the remaining of the chapter, given a partial assignment bI over a
subset of indices I , we will define the partial Hamming loss between bI

and an observation y as

`∗H(bI ,y) =
∑
i∈I

1(bi 6=yi) . (5.19)

It is clear that when I = {1, . . . ,m}, we simply retrieve the usual Ham-
ming loss. The next proposition shows that the condition of Proposition 2

actually comes down to minimize the expected partial Hamming loss.

Proposition 3 For a given set I of indices, let us consider an assignment aI

and its complement aI . We have

inf
P∈P

∑
i∈I

P(Yi = ai) = E[`∗H(aI , ·)] (5.20)

Proof 5 (Proof of Proposition 3) First, let us simply notice that P(Yi = ai) =∑
y∈Y 1yi=aiP(Y = y) and 1yi=ai = 1yi 6=ai . Putting these together, we get∑

i∈I

P(Yi = ai) =
∑
i∈I

∑
y∈Y

1yi 6=aiP(Y = y)

=
∑
y∈Y

∑
i∈I

1yi 6=aiP(Y = y) (by linearity)

= E[`∗H(aI , ·)]

where `∗H(aI , ·) is the hamming loss calculated in the set of indices
I = {i1, . . . , iq} of vector aI , which is created in the line 5 of the Algo-
rithm 2. Thus, we apply infimum, infP∈P , to each side of the last equation and
get what we sought. �

This allows us to use Algorithm 2 to find ŶM
`H,P . The following result

provides the time complexity of the algorithm.



88 5.2.1 general case

Algorithm 2: Maximal solutions under Hamming loss and general
set

Data: P (convex set of distributions)
Result: ŶM

`H,P (set of undominated solutions)
1 S = Y ;
2 for i in 1:m do
3 Zi = {I : I ⊆ {1, . . . ,m}, |I | = i} ; // Index sets of size i

4 forall z ∈ Zi do
5 forall az ∈ Yz ; // Binary vectors over indices in z

6 do
7 if infP∈P

∑
j∈z P(Yj = aj) >

i
2 then

S = S \ {y ∈ Y : yz = az};
8 end
9 end

10 end

Proposition 4 Algorithm 2 has to perform 3m − 1 computations, and its com-
plexity is in O(3m)

Proof 6 (Proof of Proposition 4) Let us simply analyze the number of compu-
tations needed. We will need to perform m times the loop of Line 2. For a given
i, we have that Zi =

(
m
i

)
, meaning that this is the number of elements to check

in the loop starting Line 4. Finally, there 2i elements to check in the loop starting
Line 5. The table below summarise the different steps.

Index Line 2 i = 1 i = 2 . . . i = m− 2 i = m− 1 i = m

|Zi|
m!

1!(m−1)!
m!

2!(m−2)! . . . m!
(m−2)!2!

m!
(m−1)!1!

m!
m!0!

|Yz| {0, 1}1 {0, 1}2 . . . , {0, 1}m−2 {0, 1}m−1 {0, 1}m

Overall, the number of checks to perform amounts to

m∑
k=1

2m−k m!
k!(m− k)!

= 3m − 1 (5.21)

�

Proposition 4 tells us that, in the case of Hamming loss, finding ŶM
`,P

can be done almost linearly with respect to the size of Y . This is to be
compared to a naive enumeration, that requires (2m)(2m−1) computations.
Figure 5.4 plots the two curves as a function of the number m of labels,
demonstrating that our result allows a significant gain in computations.
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In the experiments of Section 5.3, we shall study the differences between
ŶM
`,P and the crude approximation of Equation (5.5).
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Figure 5.4: Comparison of Algorithm 2 with naive enumeration.

It should be noted that the time complexity obtained in Proposition 2

can still be reduced using two different strategies: (1) removing dominated
elements already verified (cf. [Augustin et al., 2014, algo. 16.4]), and (2) us-
ing the precise prediction as a solution of the set of solutions E-admissible
(c.f [Carranza Alarcón et al., 2020e, appx. A]). However, in the worst-case
scenario, in which all elements are non-dominated, the time complexity
remains the same.

As said before, the set ŶM
`H,P will in general not be exactly described

by a partial vector within Y ∗, as shows the next example.

Example 10 Consider again the tree provided in Figure 5.3. The result of apply-
ing Algorithm 2 provides the following results:

E [`H((1, ∗), ·)] = 0.444 > 0.5 =⇒ (0, ∗) 6�P
`H

(1, ∗),
E [`H((0, ∗), ·)] = 0.456 > 0.5 =⇒ (1, ∗) 6�P

`H
(0, ∗),

E [`H((∗, 1), ·)] = 0.498 > 0.5 =⇒ (∗, 0) 6�P
`H

(∗, 1),
E [`H((∗, 0), ·)] = 0.354 > 0.5 =⇒ (∗, 1) 6�P

`H
(∗, 0),

E [`H((1, 1), ·)] = 0.942 > 1.0 =⇒ (0, 0) 6�P
`H

(1, 1),

E [`H((1, 0), ·)] = 0.846 > 1.0 =⇒ (0, 1) 6�P
`H

(1, 0),

E [`H((0, 1), ·)] = 1.001 > 1.0 =⇒ (1, 0) �P
`H

(0, 1),

E [`H((0, 0), ·)] = 0.810 > 1.0 =⇒ (1, 1) 6�P
`H

(0, 0),

where for two partial vectors y1,y2 such that I ∗
y1

= I ∗
y2

, we use the short-hand
notation y1 �P

`H
y2 to say that the dominance relation given by Definition 5 holds

for any fixed replacement of the abstained labels.
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About this example, we can first note that only 32 − 1 = 8 comparisons
are performed (in accord with Proposition 4). Secondly, also note that the final
solution which is the set

ŶM
`H,P = {(1, 0), (0, 0), (1, 1)}

does not belong to Y ∗.

Remark 6 Note that if for some partial vectors y Proposition 2 holds, the prefer-
ence also holds for any completion of such a vector. More precisely, if we denote
by I

∗ the indices of non-abstained labels, and aI an assignment over indices
I ⊆ I ∗ (where I ∗ = {1, . . . ,m} \ I

∗), one can deduce from y �P
`H
y that

(yI
∗ ,aI ) �P

`H
(yI

∗ ,aI ). For instance if (0, ∗, ∗) �P
`H

(1, ∗, ∗), then we can
additionally deduce (0, ∗, 0) �P

`H
(1, ∗, 0).

Remark 7 A key finding of the results of this section, illustrated by Example 10,
is that when considering sets of distributions and skeptic inferences, it is not suf-
ficient to consider marginal probabilities in order to get optimal, exact predictions.
This contrasts heavily with the case of precise distributions, in which having only
the marginal information allows to get optimal predictions for a number of loss
functions, including the Hamming loss, but also precision@k, micro- and macro-F
measure, as well as others [Kotlowski et al., 2016; Koyejo et al., 2015].

5.2.2 Binary relevance and partial vectors

The previous section looked at the very general case where the set P is
completely arbitrary and proposed some efficient inference methods for
this case. In this section, we are interested in conditions imposed upon
P that guarantee the sets ŶM

`H,P and ŶE
`H,P to be partial vectors, that is

to belong to Y ∗. In particular, we show that this is the case when consid-
ering models that generalize binary relevance notions by using imprecise
marginals with an assumption of independence. The interest of studying
such models is that they constitute the basic models when it comes to
multi-label problems.

Before proceeding to the generalization of binary relevance models
producing partial binary vectors, we first prove an intermediate useful
result characterising partial vectors in terms of the vector set they represent.
More precisely, we first express a condition for a subset Y of Y to be a
partial vector, in terms of its elements.

Lemma 2 A subset Y belongs to the space Y ∗ if and only if

∀y,y ′ ∈ Y, we have that all y ′′ ∈ Y s.t. y ′′i = y ′i ∀i ∈ Iy=y ′ are also in Y

Proof 7 (Proof of Lemma 2) Only if: Immediate, since by assumption
Iy6=y ′ ⊆ I ∗, the set of label indices on which we abstain.
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If: Consider the set DY = {j|∃y,y ′ ∈ Y,yj 6= y ′j} of indices for which at least
two elements of Y disagree. What we have to show is that under the condition of
Lemma 2, any completion of DY is within Y.

Without loss of generality, as we can always permute the indices, let us con-
sider that DY are the |DY| first indices. We can then find a couple y,y ′ ∈ Y such
that the k first elements are distinct, that is Iy6=y ′ = {1, . . . ,k}. It follows that
the subset of vectors

(∗, . . . , ∗︸ ︷︷ ︸
k times

,yk+1, . . . ,y|DY|,y|DY|+1, . . . ,ym) (5.22)

is within Y, by assumption. If k < |DY|, we can find a vector y ′′ such that
its k ′ next elements (after the kth first) are different from y, i.e., yj 6= y ′′j for
j = k + 1, . . . ,k + k ′ with k + k ′ 6 |DY|. Note that k ′ > 1 by assumption.
Since the vector (5.22) is in Y, we can always consider the vector y such that
its k first elements are different from those of y ′′, that is in Y. Since Iy6=y ′ =
{1, . . . ,k+ k ′}, the subset of vectors

( ∗, . . . , ∗︸ ︷︷ ︸
k+k ′ times

,yk+k ′+1, . . . ,y|DY|,y|DY|+1, . . . ,ym)

is also in Y. Since we can repeat this construction until having two vectors with
the |DY| first labels different, this finishes the proof. �

We now consider that the joint probability p over Y and its imprecise
extension are built in the following way: we have some information on
the marginal probability pi ∈ [0, 1] of yi being positive, and define the
probability of a vector y as

p(y) =
∏

{i|yi=1}

pi
∏

{i|yi=0}

(1− pi). (5.23)

Without loss of generality, the imprecise version then amounts to consider
that the information we have is an interval [p

i
,pi], as every convex set of

probabilities on a binary space (here, {0, 1}) is an interval. We then consider
that a probability set PBR over Y amounts to consider the robust version
of Equation (5.23), that is

p(y) ∈

 ∏
{i|yi=1}

pi
∏

{i|yi=0}

(1− pi)

∣∣∣∣∣∣
pi ∈ [p

i
,pi]

 . (5.24)

In this specific case, we can show that ŶE
`H,P can be exactly described by a

partial vector.

Proposition 5 Given a probability set PBR and the Hamming loss, the set
ŶE
`H,PBR

∈ Y ∗
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Proof 8 (Proof of Proposition 5) Let us first notice that, after Equation (5.4),
we have that

y ∈ ŶE
`H,P ⇐⇒

{
p
i
6 0.5 for i ∈ Iy=0

pi > 0.5 for i ∈ Iy=1
(5.25)

where Iy=0, Iy=1 are the indices of labels for which yi = 0 and yi = 1. Indeed,
since here we start from the marginals, y is optimal according to Hamming loss
and a distribution in PBR iff we can fix pi to be lower than 0.5 if yi = 0, and
higher else.

Now, let us consider two vectors y1,y2 and the indices Iy1 6=y2 . Given
the first part of this proof, if y1,y2 ∈ ŶE

`H,P , this means that 0.5 ∈ [p
i
,pi]

for any i ∈ Iy1 6=y2 . Therefore, given any vector y ′′ such that y ′′i = y1i for
i ∈ Iy1=y2 , for the other indices i ∈ Iy1 6=y2 , we can always fix a precise value
pi ∈ [p

i
,pi] such that y ′′ is also optimal w.r.t. p. More precisely, assume the

assignments p1i and p2i result in y1,y2 being optimal predictions for the Hamming
loss, respectively. Then y ′′ is optimal for the assignment

p ′′i =

{
p1i if y ′′i = y1i
p2i if y ′′i = y2i

that is by definition within PBR. �

Proposition 5 shows that in the specific yet important case of binary
relevance models, ŶE

`H,P can be computed efficiently and easily presented
to users. In particular, Equation (5.5) is in this case exact, and can be
used to compute ŶE

`H,PBR
. We will denote by ŷ∗`H,PBR

the partial vector
corresponding to ŶE

`H,PBR
, as the next proposition shows that it is also an

exact estimation of ŶM
`H,PBR

.

Proposition 6 Given a probability set PBR and the Hamming loss, we have

ŶE
`H,PBR

= ŶM
`H,PBR

.

Proof 9 (Proof of Proposition 6) As Proposition 5 shows, the E-admissible
set is given by the partial vector ŷ∗`H,PBR

. To show that it also coincides with
ŶM
`H,PBR

, we will consider the fact that ŷ∗`H,PBR
⊆ ŶM

`H,PBR
, and will demon-

strate that any vector outside ŷ∗`H,PBR
is dominated (in the sense of Equation (5.2))

by a vector within ŷ∗`H,PBR
.

Let us consider a vector y ′ 6∈ ŷ∗`H,PBR
, and the indices

Iy ′ 6=ŷ∗ = {i : ŷ∗i,`H,PBR
6= ∗, ŷ∗i,`H,PBR

6= y ′i}

on which they necessarily differ (as we can always set the labels for which
ŷ∗i,`H,PBR

= ∗ to be equal to y ′i). By Proposition 1, we have that
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ŷ∗`H,PBR
�M y ′ ⇐⇒ inf

P∈P

∑
i∈Iy ′ 6=ŷ∗

P(Yi = ŷ
∗
i ) >

|I |

2

and since we have that ŷ∗i = 1 ⇒ P(Yi = 1) > 0.5 and ŷ∗i = 0 ⇒ P(Yi = 0) >

0.5, the right hand side inequality is satisfied. Hence, we can show that any vector
outside ŷ∗`H,PBR

is maximally dominated by another vector in ŷ∗`H,PBR
, meaning

that ŷ∗`H,PBR
⊇ ŶM

`H,PBR
. Combined with the fact that ŷ∗`H,PBR

⊆ ŶM
`H,PBR

, this
finishes the proof. �

Remark 8 As the optimal prediction for the 0/1 or subset loss `0/1 in the precise
case is the same as Equation (5.4), Proposition 5 is also true for this loss, as well
as Proposition 6.

In Section 5.2.3, we provide a couple of complementary results with
respect to other decision criteria, which are either very conservative (i.e.,
interval dominance) or not skeptic (i.e., minimax and minimin), in the
sense that their inferences are always precisely valued, not matter how big
P is.

5.2.3 On Binary relevance and other decision criterions

So far, we considered only the most common skeptic decision criteria (max-
imality and E-admissibility) in order to get a set of predictions (either par-
tial or not). However, there are other decision criteria using probability
sets and extending the classical expected loss criterion. The most common
being (1) Interval dominance, (2) Γ -minimin, (3) Γ -maximin (at work in
distributionally robust approaches).

For a complete reminder about definitions of these last three criteria, we
refer to Section 2.1.2. We simply remind that in general one has that ŷΓmin

`,P 6=
ŷΓmax
`,P , yet when considering probability sets satisfying the hypothesis of

Section 5.2.2, we have the following result regarding Γ -minimin and Γ -
maximin criteria:

Proposition 7 Given a probability set PBR and the Hamming loss `H, we have:

ŷΓmax
`H,PBR

= ŷΓmin
`H,PBR

(5.26)

Proof 10 (proof of Proposition 7) Let us prove first how get the prediction for
each decision criteria, by harnessing the facts that the Hamming loss is decompos-
able and that E [`H(y, ·)] = m−

∑
i P(Yi = yi).

1. Γ -Minimax.— as the Hamming loss is decomposable we can easily reduce
Equation (2.7) as follows:

arg min
y∈Y

EP [`H(y, ·)] ⇐⇒ arg max
y∈Y

inf
P∈P

m∑
i=1

P(Yi = ŷi) (5.27)
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by using a probability set PBR, we have

ŷΓmax = arg max
y∈Y

m∑
i=1

P(Yi = yi) ⇐⇒ ŷΓmax =


1 if P(Yi = 1) > P(Yi = 0)

0 if P(Yi = 1) < P(Yi = 0)

∗ otherwise

(5.28)
where ∗ can here be replaced by 0 or 1, as all those predictions are deemed
indifferent by the Minimax principle.

2. Γ -Minimin.— in the same way as previously, we easily have :

ŷΓmin = arg max
y∈Y

m∑
i=1

P(Yi = yi) ⇐⇒ ŷΓmin =


1 if P(Yi = 1) > P(Yi = 0)

0 if P(Yi = 1) < P(Yi = 0)

∗ otherwise

(5.29)
where ∗ is to be understood as in the previous case.

By using the fact the the lower and upper probabilities are dual, P(Yi = 1) =

1 − P(Yi = 0), it is easy to see that the criteria to choose the ŷΓmin is equal to
ŷΓmax , therefore, ŷΓmax

`H,PBR
= ŷΓmin

`H,PBR
. �

It is well known that the set ŶID`,P is a superset of ŶM
`H,P , due to its

conservative nature. The next simple example shows that even in the case
of binary relevance models, this inclusion can be strict.

Example 11 Consider the simple case where we have two labels with the follow-
ing bounds: P(Y1 = 1) ∈ [0.6, 1] and P(Y2 = 1) ∈ [0, 1]. We then have the
following expectation bounds for the various predictions and a Hamming loss

y (1, 1) (1, 0) (0, 1) (0, 0)
E [`H(y, ·)] 0 0 0.6 0.6
E [`H(y, ·)] 1.4 1.4 2 2

from which we deduce that ŶID`H,P = (∗, ∗), while ŶM
`H,P = (1, ∗).

Corollary 1 Given a probability set PBR and the Hamming loss `H, in the Fig-
ure 5.5, we can show the following implications for the different decision crite-
ria that are Maximality, E-admissibility, Γ -minimax, Γ -minimin, and Interval
Dominance. As usual with sets, an implication A→ B means that A ⊆ B.

5.3 experiments

In this section, we perform some empirical experiments1 showing the in-
terest of using skeptical inferences rather than precisely-valued inferences

1 Implemented in Python, see https://github.com/sdestercke/classifip.

https://github.com/sdestercke/classifip
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ŷ
Γmin
`H,PBR

ŷΓmax
`H,PBR

ŶE
`H,PBR

ŶM
`H,PBR

ŶID
`H,PBR

Figure 5.5: Decision relation under a PBR and a `H. In red arrow, the new
implications.

when uncertainties are too high. First, in Section 5.3.1, we formalize
the procedure we used in Example 9 to compute the lower expectation
in binary tree structures used for instance to verify Equation of Proposi-
tion 2. Section 5.3.2 and 5.3.3 respectively describe experimental results
on simulated and real-word data sets. The first experiment aims to evalu-
ate the quality of our proposal against the outer-approximation described
in [Destercke, 2014]. The second aims, under the assumption of indepen-
dence detailed in Section 5.2.2 on labels, to verify how skeptical and pre-
cise inferences cope with the following two different settings: missing and
noisy labels.

5.3.1 Inference in imprecise binary trees

As we saw in Proposition 2 and Algorithm 2, estimating ŶM
`H,P , given an

observed instance x, implies the calculation of the infimum expectation
EY|X=x [`H(·,aI )] given an assignment aI . One possibility to compute it
is to write it as an iterated conditional expectation over the chain of labels,
i.e.,

EY|X=x [`H(·,aI )] =

inf
P∈P

EY1

[
EY2

[
. . .EYm

[
`H(·,aI )

∣∣∣X = x, YIJm−1K = yIJm−1K

]
. . .
]∣∣∣X = x

]
,

(5.30)

where JjK = {1, 2, . . . , j−1, j} is a set of previous indices and YIJm−1K =

{Y1, . . . , Ym−1} is a random binary vector. While such an expectation
has to be computed globally, it has been shown by Hermans and De
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Cooman [Hermans et al., 2009] that in the specific case of tree struc-
tures, it can be computed recursively 2 using the law of iterated lower
expectations3

EY|X=x [`H(·,aI )] =

EY1

[
EY2

[
. . .EYm

[
`H(·,aI )

∣∣∣X = x, YIJm−1K = yIJm−1K

]
. . .
]∣∣∣X = x

]
.

(5.31)

Equation (5.31) computes the global infimum expectation by backward
recursion, i.e., we first compute the local lower expectation starting from
the leaves of the tree and proceed iteratively (for further details see [Yang
et al., 2014]). Example 12 provides us an illustration of this backward
recursion.

Example 12 Let us consider a multi-label problem with two labels {Y1, Y2} with
the credal set P over Y defined by the tree pictured in Figure 5.6. Consider
y1 = (·, 1) and y2 = (·, 0) two binary vectors which have the same value of the
label Y1. According to Proposition 2, the assignment of these vectors is a{2} = (1)

(and its complement a{2} = (0)). In order to verify whether y1 dominates y2 (in
the sense of the maximality criterion), we have to check whether

EY|X=x [`
∗
H(aI , ·)] > 0.5, (5.32)

where the cost vector of the partial Hamming loss is = (0, 1, 1, 0) as can be verified
in Figure 5.6.

y1 = 1

(y1=1,y2=1), `H(·,aI) = 0[0.35,0.90]

(y1=1,y2=0), `H(·,aI) = 1[0.10,0.65][0.45,0.70]

y1 = 0

(y1=0,y2=1), `H(·,aI) = 1[0.85,0.97]

(y1=0,y2=0), `H(·,aI) = 0[0.03,0.15]

[0.30,0.55]

EY{2}|x

[
`H(·,aI)

∣∣Y{1}=1
]
=0.10

EY{2}|x

[
`H(·,aI)

∣∣Y{1}=0
]
=0.85

EY{1}|x
[·]=0.85 ∗ 0.3+ 0.1 ∗ 0.7 = 0.33

Figure 5.6: Example of computing the infimum expectation.

Thus, applying recursively Equation (5.31), we obtain an infimum expectation
EY|X=x [`H(·,aI )] = 0.33. As it is lower than 0.5, we cannot conclude that
y1 �M y2.

2 A backward recursive efficient algorithm was implemented by Gen et al in [Yang et al.,
2014].

3 In general, there is only an inequality between Equations (5.30) and (5.31)
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Finally, let us note that computing marginals P(Y{i} = 0) and P(Y{i} = 1)
used in Equation (5.5) is equally easy, as it amounts to compute the lower
expectation of the indicator functions 1(yi=0) and 1(yi=1) , respectively.

5.3.2 Exact vs approximate skeptic inference

In this section, we want to assess how good is the outer-approximation
proposed in [Destercke, 2014] and given by Equation (5.5), by comparing
it to an exact estimation of the set ŶM

`H,P . Such an estimate is essential to
know in which situation Equation (5.5) is likely to give a too conservative
outer-approximation, and in which cases it can safely be used.

To perform this study, we simulate credal sets P over Y by generating
binary trees in the following way: we choose an ε ∈ [0, 0.5], and for a label
Yi and a path y1, . . . ,yi−1, we generate a random θ ∼ U([0, 1]) to obtain the
interval

Px(Y{i} = 1|y1, . . . ,yi−1) = max(0, θ− ε) = 1− Px(Y{i} = 0|y1, . . . ,yi−1),

Px(Y{i} = 1|y1, . . . ,yi−1) = min(θ+ ε, 1) = 1− Px(Y{i} = 0|y1, . . . ,yi−1),

where U([0, 1]) is a uniform distribution and ε is a parameter representing
the imprecision level of our interval. The value of parameter ε impacts
directly on the width of the interval and therefore on the precision of the
obtained prediction. The tree in Figure 5.6 is of this kind.

In order to ensure the truthfulness and completeness of the compari-
son of two skeptic inferences, we evaluate them on five different samples
of 2000 binary trees, each sample having a fixed ε (i.e. 103 instances). For
each instance, we evaluate the quality of the outer-approximation by com-
puting the number of added elements in the corresponding set of binary
vectors, i.e.

dε
(ŷ,Ŷ)

= |ŷ∗`H,P |− |ŶM
`H,P |. (5.33)

As we have that ŷ`H,P ⊇ ŶM
`H,P , Equation 5.33 will never be negative.

Also, since different number of labels will induce different upper bounds
for Equation (5.33), we uniformize the results across different numbers by
partitioning the results in four bins:

q0 = #
{
(ŷ, Ŷ)

(2000)
i

∣∣∣ dε
(ŷ,Ŷ)i

= 0
}

,

q60.25 = #
{
(ŷ, Ŷ)

(2000)
i

∣∣∣ 0 < dε
(ŷ,Ŷ)i

6 2|Ω|/4
}

,

q60.5 = #
{
(ŷ, Ŷ)

(2000)
i

∣∣∣ 2|Ω|/4 < dε
(ŷ,Ŷ)i

6 2|Ω|/2
}

,

q61 = #
{
(ŷ, Ŷ)

(2000)
i

∣∣∣ 2|Ω|/2 < dε
(ŷ,Ŷ)i

6 2Ω
}

.



98 5.3.3 skeptic inference with binary relevance

Finally, we perform the computer simulations on a discretization of the
parameter ε ∈ {0.05, 0.15, . . . , 0.45}. Thus, the results obtained, in percent-
age and with confidence interval (of the five repetitions), for each ε value
and partitions q∗ are shown in the Table 5.1. We omitted the results of
ε = 0.45 since it always yields q0 = 100% for all labels.

We can summarise the main findings of those simulations as follows:

• globally, ŷ∗`H,P provides a quite accurate approximation of the true
set, as it is exact (i.e., in q0) most of the time;

• the quality of ŷ∗`H,P decreases as the number of labels increases, mak-
ing it unfit for applications involving a very high number of labels
such as extreme multi-label [Jain et al., 2016];

• the quality of ŷ∗`H,P seems to be the worst for moderate imprecision,
probably because a high imprecision will tend to provide more vacu-
ous (i.e., empty vectors) predictions;

• there are a few cases where ŷ∗`H,P provides bad (i.e., are in q60.5) to
really bad approximation (i.e., are in q61). This indicates that having
exact inference methods may be helpful to identify those cases.

All these last findings are confirmed by Figures 5.7 that display the
evolutions of the partitions q0 (left) and q60.25(right).
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Figure 5.7: Evolution of average partitions amounts q∗ (%) (with confi-
dence interval) of the partition q0 (left) and q60.25(right)

In what follows, we perform other experimental studies on real data
sets in order to check how skeptic inferences for multi-label problems
behave in presence of noisy or missing labels.

5.3.3 Skeptic inference with Binary relevance

In this subsection, we perform a set of experiments to investigate the use-
fulness of using skeptic inferences in multi-label problems. In particular,
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#label ε
dε
ŷ,Ŷ

q0 q60.25 q60.5 q61

2

0.05 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%
0.15 98.93± 0.11% 0.00± 0.00% 1.07± 0.11% 0.00± 0.00%
0.25 98.98± 0.18% 0.00± 0.00% 1.02± 0.18% 0.00± 0.00%
0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

3

0.05 99.04± 0.06% 0.66± 0.07% 0.30± 0.09% 0.00± 0.00%
0.15 98.17± 0.27% 1.45± 0.29% 0.38± 0.10% 0.00± 0.00%
0.25 98.11± 0.17% 0.46± 0.08% 1.43± 0.17% 0.00± 0.00%
0.35 99.82± 0.04% 0.00± 0.00% 0.18± 0.04% 0.00± 0.00%

4

0.05 97.05± 0.25% 2.95± 0.25% 0.00± 0.00% 0.00± 0.00%
0.15 95.85± 0.38% 2.97± 0.24% 1.17± 0.17% 0.01± 0.02%

0.25 99.02± 0.17% 0.08± 0.05% 0.90± 0.18% 0.00± 0.00%
0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

5

0.05 90.94± 0.65% 8.02± 0.51% 1.04± 0.23% 0.00± 0.00%
0.15 92.79± 0.18% 4.53± 0.42% 2.01± 0.37% 0.67± 0.21%

0.25 97.92± 0.05% 1.05± 0.20% 0.73± 0.15% 0.30± 0.09%

0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

6

0.05 90.26± 0.44% 9.74± 0.44% 0.00± 0.00% 0.00± 0.00%
0.15 91.44± 0.63% 4.75± 0.35% 2.79± 0.19% 1.02± 0.23%

0.25 97.98± 0.18% 1.28± 0.06% 0.71± 0.12% 0.03± 0.02%

0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

7

0.05 85.39± 0.53% 13.91± 0.47% 0.70± 0.08% 0.00± 0.00%
0.15 92.99± 0.61% 6.62± 0.58% 0.36± 0.08% 0.03± 0.02%

0.25 98.60± 0.15% 0.37± 0.07% 1.03± 0.13% 0.00± 0.00%
0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

8

0.05 78.61± 1.35% 19.9± 1.31% 1.49± 0.25% 0.00± 0.00%
0.15 91.66± 0.33% 5.97± 0.31% 1.78± 0.15% 0.59± 0.14%

0.25 97.70± 0.21% 1.66± 0.21% 0.64± 0.20% 0.00± 0.00%
0.35 99.67± 0.04% 0.00± 0.00% 0.33± 0.04% 0.00± 0.00%

9

0.05 76.25± 0.60% 22.49± 0.57% 1.26± 0.16% 0.00± 0.00%
0.15 91.11± 0.76% 4.94± 0.58% 3.30± 0.33% 0.65± 0.19%

0.25 99.46± 0.08% 0.00± 0.00% 0.54± 0.08% 0.00± 0.00%
0.35 99.85± 0.09% 0.00± 0.00% 0.15± 0.09% 0.00± 0.00%

10

0.05 74.28± 0.92% 25.03± 0.96% 0.69± 0.07% 0.00± 0.00%
0.15 93.43± 0.32% 4.44± 0.34% 1.38± 0.33% 0.75± 0.25%

0.25 98.50± 0.15% 0.00± 0.00% 1.50± 0.15% 0.00± 0.00%
0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

11

0.05 73.63± 0.60% 24.99± 0.66% 1.38± 0.13% 0.00± 0.00%
0.15 93.72± 0.64% 4.20± 0.55% 2.08± 0.56% 0.00± 0.00%
0.25 97.20± 0.20% 2.80± 0.20% 0.00± 0.00% 0.00± 0.00%
0.35 100.0± 0.00% 0.00± 0.00% 0.00± 0.00% 0.00± 0.00%

Table 5.1: Average partitions amounts q∗ (%) with confidence interval.

we investigate what happens when some labels are noisy or missing. To
that end, we use a set of standard real-word data sets from the MULAN



100 5.3.3 skeptic inference with binary relevance

repository4 (c.f. Table 5.2), following a 10×10 cross-validation procedure
to fit the model.

Data set #Features #Labels #Instances #Cardinality #Density
emotions 72 6 593 1.90 0.31

scene 294 6 2407 1.07 0.18

yeast 103 14 2417 4.23 0.30

Table 5.2: Multi-label data sets summary

evaluation As we perform set-valued predictions, usual measures
used in multi-label problems cannot be adopted here. We thus consider
it appropriate to use an incorrectness measure (IC), coupled with a com-
pleteness (CP) measure [Destercke, 2014, §4.1], defined as follows

IC(Ŷ,y) =
1

|Q|

∑
ŷi∈Q

1(ŷi 6=yi), (5.34)

CP(Ŷ,y) =
|Q|

m
, (5.35)

where Q denotes the set of predicted labels such that ŷi = 1 or ŷi = 0

(in other words any abstained predicted label ŷi = ∗ is not in Q). When
predicting complete vectors, then CP = 1 and IC equals the Hamming
loss (5.3), and when predicting the empty vector, i.e. all labels equals to
ŷi = ∗, then CP = 0 and by convention IC = 0. Since those measures are
adapted to partial vectors, we will use a simple binary relevance strategy
in the experiments.

naive credal classifier To obtain intervals over each label, we use
the naı̈ve credal classifier presented in Section 2.3. In our case, we will
consider each label as a simple binary classification problem, and will
estimate the marginal probability using the model

P(Y{j} = yj|X = x) =
P(Y{j} = yj)

∏d
i=1 P(Xi = xi|Y{j} = yj)∑

yl∈{0,1} P(Y{j} = yl)
∏d
i=1 P(Xi = xi|Y{j} = yl)

. (5.36)

Computing lower and upper probability bounds [PY{j}|X,PY{j}|X] over all
conditional distributions PX|Y{j}

(since we assume a precise estimation of
the marginal distribution) can be performed using Equations (2.28) and
(2.30), as follows

P(Y{j} = yj|X = x)=

(
1+

P(Y{j} = y)
∏d
i=1 P(Xi = xi|Y{j} = yj)

P(Y{j} = yj)
∏d
i=1 P(Xi = xi|Y{j} = yj)

)−1

, (5.37)

4 http://mulan.sourceforge.net/datasets.html

http://mulan.sourceforge.net/datasets.html
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P(Y{j} = yj|X = x)=

(
1+

P(Y{j} = y)
∏d
i=1 P(Xi = xi|Y{j} = y)

P(Y{j} = yj)
∏d
i=1 P(Xi = xi|Y{j} = yj)

)−1

, (5.38)

where yj is the complement to yj. To obtain the other bounds of those
equations, we use Equation (2.40) obtained by Imprecise Dirichlet model
(IDM) described in Section 2.3.2.

In this chapter, we restrict the values of the hyper-parameter of the
imprecision of IDM to s ∈ {0, 0.5, 1.5, 2.5, 3.5, 4.5}. Our purpose here is not
to find the “optimal” value of s, but to show the effectiveness of injecting
imprecision (i.e. to provide robust and skeptical inferences).

missing labels In this setting, we proceed to choose uniformly at ran-
dom a percentage of missing labels, with five different levels of missing-
ness: {0, 20, 40, 60, 80}. Missing values are removed from the training data.
Table 5.3 illustrates a data set with missing values (or partially labelled
instances).

Features Missing Noise-Reversing Noise-Flipping
X1 X2 X3 X4 X5 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

107.1 25 Blue 60 1 1 0 * 1 0→1 0 1 1∧β0 0

-50 10 Red 40 0 1 * 1 1 0 1→0 1 0 1∧β0

200.6 30 Blue 58 1 * 1 0 0→1 0 0 0 0 0

107.1 5 Green 33 0 * 1 0 1 1→0 0 1∧β0 1∧β0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5.3: Missing and Noise representation of labels

In the Figures 5.8 and 5.9, we provide the results of the incorrect-
ness and completeness measures, respectively, obtained by fitting the NCC
model on different percentages of missing labels and data sets of the Ta-
ble 5.2.

The results show that as the percentage of missing labels increases the
incorrectness and the completeness both decrease, especially on Emotions
and Scene data sets. This means that the more imprecise we get, the more
accurate are those predictions we retain. The effect is less significant on the
yeast data set, where one needs a high amount of imprecision to witness
a gain in correctness. One quite noticeable result is that for the Emotions
data set, even with 80% of missing label, a slight imprecision (s = 0.5 )
allows us to reach a reasonable completeness of about 80% with a gain
of 5% in terms of correct predictions. Also, as the confidence intervals
displayed in Figure 5.8 are very small, and remain so in the other settings
where labels are non-missing but noisy.

Results obtained are sufficient to show that skeptic inferences with
probability sets may provide additional benefits when dealing with miss-
ing labels. Those results could, of course, be improved by picking other
classifiers, such as the NCC2 [Corani et al., 2008b], an extension of the
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Figure 5.8: Missing labels. Evolution of the average incorrectness (%) for
each level of imprecision (a curve for each one) and discretization z = 5
(top) and z=6 (down), with respect the percentage of missing labels.
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Figure 5.9: Missing labels. Evolution of the average completeness (%) for
each level of imprecision (a curve for each one) and discretization z = 5
(top) and z=6 (down), with respect the percentage of missing labels..

NCC tailored for missing values, or imprecise classifiers able to cope with
continuous attributes (c.f. Chapter 3).

noisy labels In this setting, we proceed in the same way as with the
missing setting, except that the value of selected labels are not assigned
to ∗, but are modified according to some noise scheme. We consider two
different ways to modify the assignments:
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1. Reversing: in this case, we reverse the current value of the selected
label. In other words, if Yj,i = 1, the label j of the instance i becomes
Yj,i = 0 (similar for the case of Yj,i = 0 → Yj,i = 1), with six different
levels of noisy {10, 20, 30, 40, 50, 60},

2. Flipping: in contrast to the previous case, for each selected label
Yj,i, we replace it by the result of a Bernoulli trial with probability
β := P(Yj,i = 1), i.e. Yj,i ∼ Ber(β), with β ∈ {0.2, 0.5, 0.8}, with three
levels of noisy {40, 60, 80}

Table 5.3 provides an illustration of these two noise settings, in the
columns “Noise-Reversing” and ”Noise-Flipping“, respectively.
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Figure 5.10: Noise-Reversing. Evolution of the average incorrectness (%)
for each level of imprecision (a curve for each one) and two levels of
discretization z= 5 (top) and z= 6 (down), with respect to the percentage
of noise.

In Figures 5.10 and 5.12, we provide the results of the incorrectness
measure obtained by fitting the NCC model on different percentages of
Reversing and Flipping settings applied to the data sets of the Table 5.2.
Results about completeness are given in Figures 5.11 and 5.13

Concerning the Reversing, or adversarial setting, it is clear from the
graphs that allowing for imprecision and skeptical inferences provides
some level of protection, which can be witnessed by the fact that at a given
level of noise, including some imprecision limits the increase in incorrect-
ness, and sometimes even improves the quality of the made predictions
by abstaining on those instances where adversarial noise was introduced.
Of course, this goes hand-in-hand with a corresponding decrease of com-
pleteness, but this seems a fair price to pay to protect against adversarial
noise.
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Figure 5.11: Noise-Reversing. Evolution of the average completeness (%)
for each level of imprecision (a curve for each one) and two levels of
discretization z = 5 (top) and z = 6 (down), with respect to the noise
percentage.
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Figure 5.12: Noise-Flipping. Evolution of the average incorrectness (%) for
each level of imprecision (a curve for each one), two levels of discretization
z= 5 (left) and z= 6 (right), and three different probabilities β= 0.2 (top),
β= 0.5 (middle) and β= 0.8 (down) of replacing the selected label with a
1.

Results obtained on the Flipping setting are overall similar to those
found in the missing label and the Reversing label. Notable small differ-
ences are that (1) skeptical inferences are uniformly more robust (provide
more accurate predictions) than their precise counter-part, whatever the
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Figure 5.13: Noise-Flipping. Evolution of the average completeness (%)
for each level of imprecision (a curve for each one), two levels of discretiza-
tion z= 5 (left) and z= 6 (right), and three different probabilities β = 0.2
(top), β = 0.5(middle) and β = 0.8(down), with respect to the percentage
of noise.

level and nature of noise, and (2) the evenness of the noise (β value) obvi-
ously has an impact on performances, but has little impact on the overall
trends.

Similarly to the case of the missing label, it would be interesting to
experiment with other imprecise classifier, as well as with other different
noise settings (e.g. using other probability distributions as β ∼ U([0, 1])
then Yi,j = 1 if β > τ otherwise Yi,j = 0, where τ is a threshold parameter).

5.4 conclusion and discussion

Describing our uncertainty by a set of probabilities over combinatorial do-
mains such as binary vectors usually leads to difficult optimisation prob-
lems at the decision step. In this chapter, we investigated those problems
when considering the well-known Hamming loss, providing efficient in-
ference methods and, when considering the binary relevance scheme, con-
necting it to the zero/one loss function.

In essence, we significantly reduced the complexity of computing ex-
act skeptic, cautious predictions for general probability sets, and showed
that in the Binary relevance scheme, those same predictions were reduced
to partial vectors computable from marginal probability bounds over the
labels.

Experiments on the simulated data sets show that this last solution,
when used as an outer-approximation in the general case, degrades in
quality as the number of labels increase and the level of imprecision is
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mild. On the other hand, experiments on various real data sets show that
making skeptical inferences generally provide quite satisfactory results on
different scenarios, involving missing or noisy labels.

Our experiments clearly demonstrate a potential interest of the use
of skeptic inferences for multi-label problems. In future works, it would
be interesting to compare our skeptical inference approach against those
rejection and abstaining existing approaches (to the best of our knowledge,
there are few works). As for instance those cautious approaches that were
mentioned in Section 4.3. Such comparisons would nevertheless require a
deep analysis of the models, decision rules as well as instances on which
each approach abstains, but due to lack of time, an in-depth analysis could
not be carried out.

We also left open a number of theoretical and experimental issues, such
as finding out new heuristic approaches to reduce the current complexity
time O(3m − 1). Another first natural next step will be to solve the maxi-
mality criterion using the ranking loss, since it has been proved in [Dem-
bczyński et al., 2012, th.1] that is only necessary to know the marginal
distribution to minimize the expected loss of Equation (4.3). Then, we will
focus on more sophisticated loss as Jaccard loss, F-measure, and so on. As
noticed in Remark 7, such problems are likely to be much more intricate
when considering sets of probabilities.

Finally, let us notice that while this chapter focused on the issue of
multi-label learning problems, our results readily apply to any Boolean
vectors of m items. As Boolean vectors and structures as well as probabil-
ity bounds naturally appear in a number of other applications, including
occupancy grids [Mouhagir et al., 2017] or data bases [Gatterbauer et al.,
2014], a future work would be to investigate how our present findings can
help in such problems.



Chapter 6

Multi-label chaining using

naive credal classifier

“El modo de dar una vez en el clavo, es
dar cien veces en la herradura.”

—Miguel de Unamuno
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A classical issue in multi-label learning techniques is how to integrate
the possible dependencies between labels while keeping the inference task
tractable. Indeed, while decomposition techniques [Tsoumakas et al., 2007;
Fürnkranz et al., 2008] such as Binary relevance or Calibrated ranking
allow to speed up both the learning and inference tasks, they roughly
ignore the label dependencies, while using a fully specified model such as
probabilistic chains require, at worst, to scan all possible predictions (that
grow exponentially in the number of labels). A popular technique to solve
this issue, at least for the inference task, is to use a chain model [Read
et al., 2011]: this consists in using, incrementally, the predictions made on
previous labels to help better predict the relevance of a current label.

To the best of our knowledge, there are few works of multi-label classi-
fication producing cautious predictions (c.f. Section 4.3), but none of these
have studied this issues in the chain model (or classifier-chains approach).

In this chapter, we consider the problem of extending such an approach
to the imprecise probabilistic case, and propose two different ways to ex-
tend it, based on the fact that some labels are too uncertain to be used in
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the chaining. The first treats the uncertain labels in a robust way, explor-
ing all possible paths in order not to propagate early uncertain decisions,
whereas the latter marginalizes the probabilistic model over the uncertain
labels, in other words, the uncertain labels are not considered to infer the
current label. In addition to last two strategies, we propose a dynamic,
context-dependent label ordering, which selects dynamically and in prior-
ity those labels for which the decision is the least uncertain. The main goal
of such an ordering is to limit the final imprecision and bias.

Section 6.1 introduces the notations which we will use more specifically
in this chapter. In Section 6.2, we remind the classical classifier-chains ap-
proach and then we present our extended approaches based on imprecise
probabilities.

By means of the use of the naive credal classifier [Zaffalon, 1999], in Sec-
tion 6.3, we propose efficient procedures to solve the strategies presented
in Section 6.2, having a time complexity almost polynomial on the number
of labels.

Finally, in Section 6.4, we perform a set of experiments on real data
sets, which are perturbed with missing and noisy labels, in order to inves-
tigate how accurate (when we exchange abstained labels for precise ones)
and how cautious (when we abstain on labels difficult to predict) is our
approach.

6.1 problem setting

As in the previous chapter, we are also interested in making set-valued
predictions when uncertainty is too high (e.g. due to insufficient evidence
to include or discard a relevant label, see Example 13). The set-valued
prediction will here be described as a partial binary vector y∗ ∈ Y ∗ where
Y ∗ = {0, 1, ∗}m is the new output space with a new element ∗ representing
the abstention. For instance, a partial prediction y∗ = (∗, 1, 0) correspond
to two plausible binary vector solutions {(0, 1, 0), (1, 1, 0)} ⊆ Y , where Y
is the m-dimensional binary space (for further details see Section 4.1).

In the sequel, we will denote by I subsets of label indices (and by
JjK = {1, . . . , j} set of the first j integers). Given a prediction made in the j
first labels, we will denote by

1. (relevant labels) I j
R ⊆ JjK the indices of the labels predicted as rele-

vant among the j first, i.e. ∀i ∈ I j
R, yi = 1,

2. (irrelevant labels) I j
I ⊆ JjK, I j

I ∩I j
R = ∅ the indices of the labels

predicted as irrelevant among the j first, i.e. ∀i ∈ I j
I , yi = 0, and

3. (abstained labels) I j
A = JjK\(I j

R ∪I j
I ) the indices of the labels on

which we abstained among the j first, i.e. ∀i ∈ I j
A, yi = {0, 1} := ∗.



6.1 problem setting 109

Besides, for the sake of simplicity and when it is not ambiguous, we will
henceforth denote probabilities conditioned on previous labels by

P
j
x(Yj=1) := Px(Yj=1|YI j−1= ŷI j−1), (6.1)

where ŷI j−1 is a (j− 1)-dimensional vector that contains the previously
inferred precise and/or abstained values of labels having indices I j−1.

Example 13 We consider an output space of two labels K = {m1, m2}, a single
binary feature x1 and Table 6.1 with imprecise estimations of the joint distribution
P(X1, Y1, Y2).

x1 y1 y2 P̂ x1 y1 y2 P̂
0 0 0 [0.4,0.7] 1 0 0 0.00

0 0 1 [0.3,0.6] 1 0 1 0.00

0 1 0 0.00 1 1 0 [0.6,0.8]
0 1 1 0.00 1 1 1 [0.2,0.4]

Table 6.1: Estimated joint probability distribution

Based on the probabilities of Table 6.1, we have that P̂0(y1 = 0) = P̂(y1 =

0|x1= 0)= 1 and P̂0(y2= 0)∈ [0.4, 0.7], therefore not knowing whether P̂0(y2=
0) > 0.5. This leads to propose as a prediction ŷ∗ = (0, ∗). On the contrary, the
imprecision on the right hand-side is such that P̂1(y2= 0)∈ [0.6, 0.8], leading to
the precise prediction ŷ∗ = (1, 0).

Handling partial binary predictions requires a well-founded strategy
to do so, as well as efficient procedures to deal with the increased com-
plexity of the prediction space |Y ∗| = 3m. An efficient way to perform it,
and already reviewed in Chapter 5, is by making use of the assumption of
independence on labels, but unfortunately it does not integrate the depen-
dence amongst them. Moreover, if we approach it using the maximality
or interval dominance criterion without this assumption of independence
(clearly not at work in chaining approaches), it will not yield partial binary
vector either, but set-valued predictions (c.f. Example 10).

So, in the same vein as Chapter 5, we will also describe our uncer-
tainty here by means of a set of probability distributions P instead of a
single probability distribution P, as usually done (for more details about
imprecise probabilities, we refer to Section 1.3), jointly with the chaining
approach in order to produce partial binary predictions.

As mentioned in Section 1.3, IP comes up with certain additional dif-
ficulties in the learning and inference step. Thus, in this chapter, for the
former issue, we will use the NCC classifier (see Section 2.3) in order to
boost the inference step by proposing efficient procedures. For the deci-
sion step, we will use a classical-imprecise-binary inference approach; in
which if we consider K = {0, 1} as the output space and Y as a univariate
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random variable on K , it is easy to prove that if we use the maximality or
interval dominance criterion over a zero/one loss as inference procedures
(c.f. Equation (2.12), also described in [Destercke, 2014, Prop. 1]), it is
reduced to infer the univariate binary output Y on a credal set P by

ŷ =


1 if Px(Y=1) > 0.5,
0 if Px(Y=1) < 0.5,
∗ if 0.5 ∈

[
Px(Y=1),Px(Y=1)

] . (6.2)

This inference procedure will be adapted to the case of mutli-label chain-
ing, by adding subscript j to the current label to infer Yj and augmenting
the input space of regressors with previous inferred labels {Ŷ1, . . . , Ŷj−1}.

6.2 multilabel chaining with imprecise probabilities

We first recall the classical precise chaining and then propose two different
strategies to extend chaining to the imprecise probabilistic case, and a new
procedure to dynamically select the order of labels in the chain.

6.2.1 Precise probabilistic chaining

Classifier chains is a well-known approach exploiting dependencies among
labels by fitting at each step of the chain (see Figure 6.1) a new classifier
model hj : X × {0, 1}j−1 → {0, 1} predicting the relevance of the jth label.
This classifier combines the original input space attribute and all previous
predictions in the chain in order to create a new input space X ∗

j−1 =

X × {0, 1}j−1, j ∈ N>0. In brief, we consider a chain h = (h1, . . . ,hm)
of binary classifiers resulting in the full prediction ŷ obtained by solving
each single classifier as follows

ŷj := hj(x) = arg max
y∈{0,1}

P
j
x(Yj=y). (6.3)

The classical multi-label chaining then works as follows:

1. Random order of labels.-. We randomly pick an order between
labels I ∗ (possibly different from the original indices I = JmK) and
assume that the indices are relabelled in an increasing order.

2. Prediction jth label.- For a given label yj, let us assume that we
have previously predicted labels of lower index y1, . . . ,yj−1 and let
I j−1

R , I j−1
I ⊆ Jj−1K be set of indices of relevant and irrelevant labels,

such that I j−1
R ∩I j−1

I = ∅. Then, the prediction of ŷj (or hj(x)) for a
new instance x is
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ŷj =

1 if Px(Yj = 1|YI j−1
R

= 1, Y
I j−1

I

= 0) > 0.5
0 if Px(Yj = 0|YI j−1

R

= 1, Y
I j−1

I

= 0) < 0.5
(6.4)

Figure 6.1 summarizes the procedure presented above, as well as the
obtained predictions for a specific case (in bold red predicted labels and
probabilities).

Y1 = 1
(1, 1)Px(Y2=1|Y1=1)=0.6

(1, 0)Px(Y2=0
|Y1=1)=

0.4Px(Y1 = 1)=0.6

Y1 = 0
(0, 1)Px(Y2=1|Y1=0)=0.1

(0, 0)Px(Y2=0
|Y1=0)=

0.9

Px(Y1
= 0)

= 0.4

(a) Chaining with {Y1, Y2}

Y2 = 1
(1, 1)Px(Y1=1|Y2=1)=0.9

(0, 1)Px(Y1=0
|Y2=1)=

0.1Px(Y2 = 1)=0.4

Y2 = 0
(1, 0)Px(Y1=1|Y2=0)=0.4

(0, 0)Px(Y1=0
|Y2=0)=

0.6

Px(Y2
= 0)

= 0.6

(b) Chaining with {Y2, Y1}

Figure 6.1: Precise chaining

From Figure 6.1, it is clear that the ordering and the fact of choosing
a single branch at each step can have a significant impact on the final
predictions, as in our example it shifts from one prediction to its opposite.
Intuitively, adding some robustness and cautiousness in the process could
help to avoid unwarranted biases.

In what follows, we propose two different extensions of precise chain-
ing based on imprecise probability estimates. By this, we mean that it is
based on binary cautious classifiers, which consider a new output space
Y ={0, 1, ∗}m from which to pick the prediction.

6.2.2 Imprecise probabilistic chaining

When considering imprecise probabilities, the estimates Pjx(Yj=1) become
imprecise, that is, we now have [P̂jx](Yj = yj) := [Pjx(Yj = yj), P

j
x(Yj = yj)].
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The basic idea of using such estimates is that in the chaining, we should
be cautious when the classifier is unsure about which is the most probable
prediction. In this section, we describe two different strategies (or exten-
sions) in a general way, and we will efficiently adapt them by applying
the naive credal classifier (an extension of the Naive Bayes classifier) in the
next section.

Let us first formulate the generic procedure to calculate the probability
bound of jth label,

1. Random order of labels.- As before (in precise version), randomly
pick an order between labels, assuming again that indices are rela-
belled in increasing order.

2. Prediction jth label.- For a given label yj, let us assume we have
made possibly imprecise predictions for y1, . . . ,yj−1 such that I j−1

A

contains the set of indices of labels on which we abstained {∗}, and
hence, I j−1

R and I j−1
I are the set of indices of relevant and irrelevant

labels, such that I j−1
A ∪I j−1

R ∪I j−1
I = I j−1. Then, we calculate

[Pjx](Yj=1) (we will show after the possible ways to obtain this inter-
val) in order to predict the label ŷj as

ŷj =


1 if Pjx(Yj = 1) > 0.5,

0 if Pjx(Yj = 1) < 0.5,

∗ if 0.5 ∈
[
P
j
x(Yj = 1),P

j
x(Yj = 1)

]
,

, (6.5)

where this last equation is a slight variation of Equation (6.2) by using
the new input space X ∗

j−1.

We then propose two different extensions of how to calculate [Pjx](Yj =

1) at each inference step of the imprecise chaining.

1. Imprecise branching The first strategy treats unsure predictions
in a robust way, considering all possible branching in the chain-
ing as soon as there is an abstained label. Thus, the estimation of
[Pjx(Yj = 1),P

j
x(Yj = 1)] (for Yj = 0, it directly obtains as Pjx(Yj = 1) =

1− P
j
x(Yj = 0), and similarly for the upper bound) comes down to

compute

P
j
x(Yj = 1)= min

y∈{0,1}|IA|
Px(Yj = 1|YI j−1

R

= 1, Y
I j−1

I

= 0, Y
I j−1

A

= y),

P
j
x(Yj = 1)= max

y∈{0,1}|IA|
Px(Yj = 1|YI j−1

R

= 1, Y
I j−1

I

= 0, Y
I j−1

A

= y).
(IB)

That is to consider every possible replacements of variables for which
we have abstained so far. This corresponds to a very robust version
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of the chaining, where every possible path is explored. It will there-
fore propagate imprecision along the tree, and may produce quite
imprecise evaluations, especially if we abstain on the first labels.

Illustrations providing some intuition about this strategy can be seen
in Figure 6.2b where we have abstained on labels (Y2, Y4) and we
want to compute lower and upper probability bounds of the label
Y5 = 1.

Y1 = 1
(1,1)Px(Y2=1|Y1=1)=0.6

(1,0)Px(Y2=
0|Y1=1)=

0.4[P̂x](Y1=1)[0.45,0.7]

Y1 = 0
(0, 1)Px(Y2=1|Y1=0)=0.1

(0,0)Px(Y2=
0|Y1=0)=

0.9

[P̂x](
Y1=

0)[0
.3,0.55]

(a) Evaluatin Y2=1 labels {Y1, Y2}

0

1
1

1
1 (0, 1, 1, 1, 1)

0
1 (0, 1, 1, 0, 1)

0
1

1
1 (0, 0, 1, 1, 1)

0
1 (0, 0, 1, 0, 1)

(b) Evaluating Y5=1 label with {0, ∗, 1, ∗, ?}

Figure 6.2: Imprecise branching strategy

In Figure 6.2a, we will consider the previous example (see Figure 6.1)
in order to study in details how we should calculate probability
bounds [Pjx(Yj = 1),P

j
x(Yj = 1)]. For the sake of simplicity, we assume

that probabilities about Y2 are precise and that probability bounds of
Y1 = 1 is P̂jx(Y1 = 1) ∈ [0.45, 0.70]. This last result would correspond
to the following tree where we would consider the first two branches
as possibles paths hence

P
j
x(Y2 = 1) = min

y1∈{0,1}
Px(Y2 = 1|Y1 = y1) = min(0.1, 0.6) = 0.1, (6.6)

P
j
x(Y2 = 1) = max

y1∈{0,1}
Px(Y2 = 1|Y1 = y1) = max(0.1, 0.6) = 0.6, (6.7)

which means that in this case we would abstain on both labels, i.e.
(Ŷ1, Ŷ2) = (∗, ∗).
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2. Marginalization The second strategy simply ignores unsure pre-
dictions in the chaining. Its interest is that it will not propagate
imprecision in the tree. Thus, we begin by presenting the general
formulation (which will after lead to the formulation without unsure-
ness) which takes into account unsure predicted labels conditionally,
so the estimation of probability bounds [Pjx(Yj = 1),P

j
x(Yj = 1)] comes

down to compute

P
j
x(Yj=1)=Px(Yj = 1|YI j−1

R

=1, Y
I j−1

I

=0, Y
I j−1

A

= {0, 1}|I
j−1
A |),

P
j
x(Yj=1)=Px(Yj = 1|YI j−1

R

=1, Y
I j−1

I

=0, Y
I j−1

A

= {0, 1}|I
j−1
A |),

(MAR)

where I j−1
A = {i1, . . . , ik} denotes the set of indices of abstained labels

and the last conditional term of probability bounds can be defined as
(
Y

I j−1
A

= {0, 1}|I
j−1
A |
)
:=(Yi1 = 0∪ Yi1 = 1)∩ · · · ∩ (Yik = 0∪ Yik = 1).

(6.8)

The MAR formulation can be reduced by using Bayes’s theorem in
conjunction with the law of total probability. That is, for instance,
given abstained labels (Y1 = ∗, Y3 = ∗) and the precise prediction
(Y2 = 1), inferring Y4 = 1 comes down to compute Px(Y4 = 1|(Y1 =
0∪ Y1=1), Y2=1, (Y3=0∪ Y3=1)) as follows∑

y3,y1∈{0,1}2
Px(Y4=1, Y1=y1, Y2=y2, Y3=1)∑

y3,y1∈{0,1}2
Px(Y1=y1, Y2=y2, Y3=1)

=
Px(Y4=1, Y2=1)
Px(Y2=1)

=Px(Y4=1|Y2=1),

An illustration providing some intuition about this last example can
be seen in Figure 6.3, in which we draw the possible path to infer
the label Y4 (considering a third branch in the chain to represent
abstained labels).

*

1 *

1 (∗, 1, ∗, ?)

Figure 6.3: Marginalization strategy for four labels {Y1, Y2, Y3, Y4}

The results of the last example can easily be generalized, and hence,
MAR comes down to calculate the new formulation called (MAR*)
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P
j
x(Yj = 1) = min

P∈P∗
Px(Yj = 1|YI j−1

R

= 1, Y
I j−1

I

= 0), (6.9)

P
j
x(Yj = 1) = max

P∈P∗
Px(Yj = 1|YI j−1

R

= 1, Y
I j−1

I

= 0). (6.10)

where P∗ is simply the set of joint probability distributions de-
scribed by the imprecise probabilistic tree (we refer to de Cooman
and Herman [De Cooman et al., 2008] for a detailed analysis of
those). In general, such an optimisation can be computationally
quite intensive, but remains easy in the case of the Naive credal
classifier, thanks to its independence assumption (see Section 6.3).

Note that, once any of the two strategies has been applied, we can
either keep the prediction as it is, producing an incomplete vector where
labels having indices IA become imprecise, or we can consider precise
estimations of labels j ∈ IA by considering a minimax robust strategy,
i.e., picking ŷj = arg maxy∈{0,1} P

j
x(Yj = y) to replace the label Yj by the

corresponding prediction.

6.2.3 Safety imprecise chaining

In contrast to what we presented in the two previous subsections, where
the order of labels is obtained randomly, here we propose a new way to
order them by dynamically selecting a label as the chain moves forwards.

Our idea aims basically to choose a dynamic, context-dependent label
ordering. By context-dependent, firstly, we mean that we consider a metric
that measures the level of uncertainty associated to the credal set of the
next plausible label to infer. Secondly, and jointly with the latter metric,
we borrow, and adapt to our context, the first heuristic proposed in [Sucar
et al., 2014]. This heuristic chooses at each step of the chaining the next
plausible label with the higher predictive probability (or the one with the
best accuracy), in order to minimize the propagation of error in the final
joint probability estimate of the chain.

So, concerning the first metric, the label chosen is the one with a lower
level of uncertainty1, and which will be expressed in terms of how small
its credal set is (i.e. the length of a one-dimensional interval). In what
follows, we will formalize it.

Let us define the function φ : JmK → R>0 which measures the level of
uncertainty of the label Yj = 1 (in the same way for Yj = 0), as follows

φ(j) = P
j
x(Yj = 1) − P

j
x(Yj = 1), (6.11)

1 It may be considered as a new perspective where the decision of chosen a label is ex-
pressed in terms of gambles, for further details [De Finetti, 2017; Walley, 1991; Shafer
et al., 2019]).
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where the calculation of probability bounds can be performed using any
strategy presented in previous subsections, i.e. IB or MAR strategy.

In each inference step (or node of the chain), we perform a slight op-
timization problem of time complexity O(|IU|), where IU = JmK\(IR ∪
II ∪IA) is the set of indices of labels not yet predicted. This optimization
chooses the optimal index ĵ of those labels that has a low uncertainty (i.e.
with a φ(·) minimal) and a high predictive probability, as follows

ĵ = arg min
j


φ


arg max

j∈IU

0.5/∈[Pjx,Pjx]

P
j
x(Yj = 1)


 ,φ


arg min

j∈IU

0.5/∈[Pjx,Pjx]

P
j
x(Yj = 1)





 .

(6.12)
This last optimization may in some circumstances give back: (1) two dif-
ferent solutions as long as the level uncertainty φ(·) of both is equal, even
though it is unlikely in practice but not impossible, we select the first el-
ement sent by the minimization function of the programming language
used, and (2) an empty solution (i.e. no solution at all), it happens when
every interval of probability bounds of the set of indices IU contains 0.5,
i.e. 0.5 ∈ [P,P] (see Figure 6.4b). In the latter case, we propose to choose
the interval with lower uncertainty, as follows

ĵ = arg min
j∈IU

φ(j). (6.13)

Once the optimal ĵ index is selected, be it using Equation (6.12) or (6.13),
we can proceed by applying Equation (6.5) for the former equation, in
order to obtain the predicted value of Yĵ, and for the latter, we can directly
assign the abstained value {∗} since 0.5 ∈ [P,P].
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(a) Optimal w.r.t Equation (6.12)
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Figure 6.4: Example illustration of optimization problems of the Safety

imprecise chaining.

Illustrations providing some insights on the above-described procedure
can be found in Figure 6.4. We here study two different examples;



6.3 naive credal bayes applied imprecise chaining 117

1. in the Figure 6.4a, we first compute inside optimization problems in
order to get the most likely labels (i.e. with a higher probability);
Y3 with the highest lower probability bound and Y2 with the lowest
upper probability bound. Then, we measure the level of uncertainty
of each one, using the function φ, so the optimal label Y3 as the one
with a low uncertainty and a high probability. Finally, applying
Equation (6.5) we can obtain its predictive value Ŷ3 = 12.

2. For the latter in Figure 6.4b, we optimize Equation (6.13) which se-
lects the lowest uncertainty label Ŷ6 = ∗.

Finally, it should easily be noted that although the overall complexity
of this procedure can add an increment of O(m2) with respect to a random
or static ordering, it remains competitive as it selects the less uncertain and
the most probable label at each step of the chain in a greedy way.

6.3 naive credal bayes applied imprecise chaining

When we describe our uncertainty by means of a set of distributions Pj
Yk|x

in lieu of a single distribution P
j
Yk|x

, we can not directly use any exist-

ing classical classifier model since they are not tailored at all to use Pj
Yk|x

.
However, in the state-of-the-art, we can find a whole variety of them, ex-
tending a precise classical one to the imprecise probabilistic setting (c.f.
Section 2.2).

Naive credal classifier (NCC)3[Zaffalon, 2002] is one of these, and the
one which we adopt in this chapter for solving optimization problems of
strategies presented in the previous section as well as for our experiments
(see Section 6.4). NCC extends the classical naive Bayes classifier (NBC)
(for further details, we refer to Section 2.3)

As the purpose of the imprecise chaining is to compute binary con-
ditional dependence models, we need only get conditional probability
bounds of the probability P(Yj = yj|X = x, YIJj−1K = ŷIJj−1K), so by us-
ing Bayes’ theorem and naive Bayes’ attribute independence assumption,
it can be written as follows

P(Yj = yj)
∏d
i=1 P(Xi = xi|Yj = yj)

∏j−1
k=1 P(Yk= ŷk|Yj = yj)∑

yl∈{0,1} P(Yj = yl)
∏d
i=1 P(Xi = xi|Yj = yl)

∏j−1
k=1 P(Yk= ŷk|Yj = yl)

. (6.14)

2 If the label Y2 would have had the low uncertainty, then its predictive value would have
been Ŷ2 = 0.

3 Bearing in mind that it can be replaced by any other (credal) imprecise classifiers, see [Au-
gustin et al., 2014, §10] or our imprecise classifier presented in Chapter 3.
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Computing lower and upper probability bounds [P,P] over all possi-
ble marginals PYj and conditional distributions PXi|Yj

, PYk|Yj
can be per-

formed by solving the following minimization/maximization problem of
Equation (6.14) as follows

P(Yj = yj|X=x, YIJj−1K= ŷIJj−1K
) =

min
P∈PYj

min
P∈
{

PXi|Yj
,PYk|Yj

}
i=1,...,d
k=1,...,j−1

P(Yj = yj|X=x, YIJj−1K= ŷIJj−1K
), (6.15)

P(Yj = yj|X=x, YIJj−1K= ŷIJj−1K
) =

max
P∈PYj

max
P∈
{

PXi|Yj
,PYk|Yj

}
i=1,...,d
k=1,...,j−1

P(Yj = yj|X=x, YIJj−1K= ŷIJj−1K
). (6.16)

In practice, we assume a precise estimation of the marginal distribution
PYj in lieu of a credal set PYj , so optimization problems over the credal
set of marginal distributions PYj can be ignored. Therefore, one can eas-
ily show that last equations evaluated to Yj = 1 (Yj = 0 can be directly
calculated using duality) are equivalent to (cf. Equations (2.30) and (2.28))

P(Yj=1|X=x, YIj−1 = ŷIj−1)=

(
1+

P(Yj=0)P0(X=x)P0(YIj−1= ŷIj−1)

P(Yj=1)P1(X=x)P1(YIj−1= ŷIj−1)

)−1

(6.17)

P(Yj=1|X=x, YIj−1= ŷIj−1)=

(
1+

P(Yj = 0)P0(X=x)P0(YIj−1= ŷIj−1)

P(Yj=1)P1(X = x)P1(YIj−1= ŷIj−1)

)−1

(6.18)

where probability bounds [P1,P1] and [P0,P0] of each different conditional
event are defined as follows

P0(X = x) :=

d∏
i=1

P(Xi = xi|Yj=0) and P0(YIj−1 = yIj−1) :=

j−1∏
k=1

P(Yk = ŷk|Yj=0),

(6.19)

P1(X = x) :=

d∏
i=1

P(Xi = xi|Yj=1) and P1(YIj−1 = yIj−1) :=

j−1∏
k=1

P(Yk = ŷk|Yj=1).

(6.20)

The last conditional probability bounds are derived using the Imprecise
Dirichlet model (IDM) [Walley, 1996], more precisely using Equation (2.40)

P(Xi=xi|Yj=yj)=
n(xi|yj)

n(yj) + s
and P(Xi=xi|Yj=yj)=

n(xi|yj) + s

n(yj) + s
(6.21)
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and in the same way, we obtain probability bounds [P(Yk = ŷk|Yj =

yj),P(Yk = ŷk|Yj = yj)]. For more details about the count function n(·)
and the hyper-parameter s, we refer to Section 2.3.2.

In what follows, we propose efficient procedures to solve the strate-
gies presented in the previos section using the properties of the imprecise
classifier described above.

6.3.1 Imprecise branching

In the specific case where we use the naive credal classifier, we can effi-
ciently reduce optimization problems of the imprecise branching strategy,
namely Equations (IB), as expressed in the proposition below.

Proposition 8 Optimisation problems of the imprecise branching (IB) can be re-
duced by using probability bounds obtained from the naive credal classifier, namely
Equations (6.17) and (6.18), as follows

min
y∈{0,1}|IA|

Px(Yj=1|YI j−1
R

=1, Y
I j−1

I

=0, Y
I j−1

A

=y) ∝ max
y∈{0,1}|IA|

P0(YI j−1
A

=y)

P1(YI j−1
A

=y)
,

(6.22)

max
y∈{0,1}|IA|

Px(Yj=1|YI j−1
R

=1, Y
I j−1

I

=0, Y
I j−1

A

=y) ∝ min
y∈{0,1}|IA|

P0(YI j−1
A

=y)

P1(YI j−1
A

=y)
.

(6.23)

Besides, applying Equation (6.21) derived from the imprecise Dirichlet model,
we have that the values of abstained labels for which the previous optimisation
problems are solved are, respectively

ŷ
I j−1

A

:= arg max
y∈{0,1}|IA|

∏
yi∈y

n(yi|yj = 0) + s

n(yi|yj = 1)
(6.24)

ŷ
I j−1

A

:= arg min
y∈{0,1}|IA|

∏
yi∈y

n(yi|yj = 0)

n(yi|yj = 1) + s
(6.25)

where I j−1
A is the set of indices of (j− 1)th first predicted abstained labels.

Proof 11 (Proof of Proposition 8) Let us begin to prove the optimization prob-
lem of the lower probability of (IB) evaluated to Yj = 1

Px(Yj = 1) = min
y∈{0,1}|IA|

Px(Yj = 1|YI j−1
R

= 1, Y
I j−1

I

= 0, Y
I j−1

A

= y). (6.26)

Let us to define I j−1
∗ = I j−1

R ∪ I j−1
I as the set of indices of relevant and

irrelevant predicted labels down to (j− 1)th index. By applying Equation (6.17)
to the right side of last equation, we get
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min
y∈{0,1}|IA|


1+

P(Yj = 0)P0(X = x)P0(YI j−1
∗

= ŷ
I j−1
∗

, Y
I j−1

A

= y)

P(Yj = 1)P1(X = x)P1(YI j−1
∗

= ŷ
I j−1
∗

, Y
I j−1

A

= y)




−1

,

(6.27)
where ŷ

I j−1
∗

is the binary vector with predicted relevant and irrelevant values.
So, using the fact that minimizing 1

1+x is equal to maximize x, we therefore get

max
y∈{0,1}|IA|

P(Yj = 0)P0(X = x)P0(YI j−1
∗

= ŷ
I j−1
∗

)P0(YI j−1
A

= y)

P(Yj = 1)P1(X = x)P1(YI j−1
∗

= ŷ
I j−1
∗

)P1(YI j−1
A

= y)
. (6.28)

The first three terms of the numerator (and of the denominator) can be considered
as constants (and omitted) and by applying Equation (6.21) to the last term, we
get what we sought

max
y∈{0,1}|IA|

P0(YI j−1
A

= y)

P1(YI j−1
A

= y)

⇐⇒ max
y∈{0,1}|IA|

[
n(yj = 1) + s

n(yj = 0) + s

]|IA| ∏
yi∈y

n(yi|yj = 0) + s

n(yi|yj = 1)
,

in which it is easy see that: (1) the term [· · · ]|IA| can be omitted, and hence,
we can get ŷ

I j−1
A

, and (2) using the similar arguments above we can easily get

ŷ
I j−1

A

:= Px(Yj = 1). �

Proposition 8 amounts to saying that is not necessary to know the origi-
nal input features X and neither the (j− 1)th first precise predicted labels,
in order to get the lower and upper probability bound of Equations (IB).
However, on the other hand, it is necessary to know the number of bits n(·)
interchanged on all possibles different paths of abstained labels, which re-
mains consistent with the fact that we want to capture the optimal lower
and upper bounds of the conditional probability (i.e. the “optimal” depen-
dence interaction between labels) over all possible paths on which we have
abstained.

Proposition 8 allows us to propose an algorithm that can calculate
Equations (6.24) and (6.25) linearly in the number of abstained labels. It is
shown in the following proposition.

Proposition 9 The bounds ŷ
I j−1

A

and ŷ
I j−1

A

can be obtained in a time complex-

ity of O(|I j−1
A |) by a dichotomic search.

Proof 12 (proof of Proposition 9) This proof can be performed using a di-
chotomy algorithm (equivalent to a binary search tree), starting with yk last
abstained label (i.e. k = |IA| − 1) and calculating the values n(yk=1|·)+s

n(yk=1|·) and
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n(yk=0|·)+s
n(yk=0|·) , then we retain the maximal value of these last two terms (or the min-

imal value, whichever applies) and we go forward with second-to-last label yk−1,
but this time multiplied by the last term retained, and so on. After having obtained
the lower binary path ŷ

I j−1
A

(or the upper binary path ŷ
I j−1

A

), we can directly cal-

culate the values Pjx(Yj = 1) and Pjx(Yj = 1) (and for duality of the lower and
upper probability bounds [Pjx(Yj = 0),P

j
x(Yj = 0)]). �

The following proposition provides the time complexity of the infer-
ence step of the imprecise branching strategy, jointly with the naive credal
classifier and previous results.

Proposition 10 The global time complexity of the imprecise branching strat-
egy in the worst-case is O(m2) and in the best-case is O(m).

Proof 13 (Proof of Proposition 10) The proof for the best-case is straighfor-
ward, because if there is not any abstained labels, the time complexity is the same
than precise chaining O(m). The worst-case complexity, in which all inferred
labels are abstained, is also easy to calculate since; the first label performs a sin-
gle operation, i.e. O(1), then second label is also inferred in a single operation
due to the number of previous abstained labels is equal to 1 (c.f. Proposition 9),
then the third label takes in account two previous abstained labels and performs
two operations (c.f. Proposition 9), and the fourth label performs three operations,
and so on. We therefore obtain O(m(m−1)/2+ 1) operations which is equal O(m2)

asymptotically. �

6.3.2 Marginalization

When the naive credal classifier is considered, nothing needs to be opti-
mized in the marginalization strategy, thanks to assumption of indepen-
dence applied to each binary conditional model of the chain.

We recall that the marginalization strategy needs to compute the con-
ditional models described in Equations (MAR). These latter can be solved
using Equations (6.17) and (6.18) of the NCC. We thus focus on Equa-
tion (6.18) (Equation (6.17) can be treated in a similar way), in order to
show that the abstained labels can be removed of the conditioning and to
get the expression presented in Equation (6.10).

Based on Equation (6.18), we can only focus on the conditional proba-
bility on labels, namely Equation (6.19), and rewrite it as follows:

P0(YIj−1 = yIj−1) := P0(YI j−1
∗

= ŷ
I j−1
∗

, Y
I j−1

A

= {0, 1}|I
j−1
A |) (6.29)

where I j−1
∗ = I j−1

R ∪I j−1
I is the set of indices of relevant and irrelevant

inferred labels, and the right side of last equation can be stated as
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max
P∈
{

PYk|Yj
,PYa|Yj

}
k∈I j−1

∗ ,a∈I j−1
A

∏
k∈I j−1

∗

P(Yk = ŷk|Yj=0)
∏

a∈I j−1
A

P(Ya = 0∪ Ya = 1|Yj=0).

Thanks to the assumption of independence, each credal set is also indepen-
dent of the others, making possible to decouple the multiplication in two
parts, as follows

max
P∈PYk|Yj

k∈I j−1
∗

∏
k∈I j−1

∗

P(Yk = ŷk|Yj=0)× max
P∈PYa|Yj

a∈I j−1
A

∏
a∈I j−1

A

P(Ya = 0∪ Ya = 1|Yj=0),

where P(Ya = 0∪ Ya = 1|Yj=0) = 1, and therefore, we finally get

P0(YIj−1 = yIj−1) := max
P∈PYk|Yj

k∈I j−1
∗

∏
k∈I j−1

∗

P(Yk = ŷk|Yj=0). (6.30)

By replacing the last expression to Equation (6.18), we get what we sought

P
j
x(Yj = 1) = max

P∈PYj|Y
I
j−1
R

,Y
I
j−1
I

Px(Yj = 1|YI j−1
R

= 1, Y
I j−1

I

= 0). (6.31)

Therefore, at each inference step, we can directly apply Equations (6.17)
and (6.18) on the reduced new formulation of the marginalization strategy
(MAR*).

An illustration providing some intuition about this reduction per-
formed by applying the NCC, and followed by what was presented in
Figure 6.3, can be seen in Figure 6.5.

*

1 *

1 (∗, 1, ∗, ?)

Applying NCC
−→

1

1 (∗, 1, ∗, ?)

Y2

Y4

Figure 6.5: Marginalization strategy applied to NCC for four labels
{Y1, Y2, Y3, Y4}

Furthermore, one can be tempted to perform an approximation of the
general formulation of the marginalization strategy by using the same
arguments (i.e. the law of total probability and Bayes’ theorem), as follows.

Using similar arguments4 as in [Augustin et al., 2014, §9.2.2], the marig-
nalized credal set P∗ can be obtained by considering extreme points of the
global credal set as follows

4 Note that it can fail on certain conditions, further details [Augustin et al., 2014, §2.3.4].
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Px(Yj|ŷI j−1
∗

, ŷ{0,1}
I j−1

A

) :=

CH

Px(Yj|ŷI j−1
∗

)

∣∣∣∣∣∣∣

Px(Yj=yj|ŷI j−1
∗

, ŷ{0,1}
I j−1

A

) := Px(Yj=yj|ŷI j−1
∗

),

∀yj ∈ {0, 1},∀Px(Yj|YI j−1
∗

)∈ext
[
Px(Yj|YI j−1

∗
)
]


where I j−1

∗ = I j−1
R ∪I j−1

I set of indices of relevant/irrelevant inferred

labels, where ŷ
I j−1
∗

and ŷ
{0,1}
I j−1

A

= {0, 1}|I
j−1
A | are the previous predicted

precise and abstained values of labels, ext[P] is the set of extreme points of
the credal set, and CH{·} is the convex hull. However, the number of such
extreme points grow exponentially with the size of the tree, and providing
efficient algorithms to work with those will be the matter of future works.

6.4 experiments

In this section, we perform experiments5 on 3 data sets issued from the
MULAN repository6 (c.f. Table 5.2), following a 10×10 cross-validation
procedure (at every jth-fold, we proceed randomly to shuffle the set of
labels).

Table 6.2: Multi-label data sets summary

Data set #Features #Labels #Instances #Cardinality #Density
emotions 72 6 593 1.90 0.31

scene 294 6 2407 1.07 0.18

yeast 103 14 2417 4.23 0.30

6.4.1 Evaluation and setting

The usual metrics used in multi-label problems are not adapted at all when
we infer set-valued predictions. Thus, we consider appropriate to use the
set-accuracy (SA) and completeness (CP) [Destercke, 2014, §4.1], as follows

SA(ŷ,y) = 1(y∈ŷ) and CP(ŷ,y) =
|Q|

m
,

where ŷ is the partial binary prediction (i.e. the set of all possibles binary
vectors) and Q denote the set of non-abstained labels. When predicting
complete vectors, then CP = 1 and SA equals the 0/1 loss function and
when predicting the empty vector, i.e. all labels ŷi = ∗, then CP =0 and by
convention SA =1. The reason for using SA is that chaining is used as an
approximation of the optimal prediction for a 0/1 loss function.

5 Implemented in Python, see https://github.com/sdestercke/classip
6 http://mulan.sourceforge.net/datasets.html

https://github.com/sdestercke/classip
http://mulan.sourceforge.net/datasets.html
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6.4.2 Imprecise classifier

As was mentioned earlier, in Section 6.3, we chose to use the so-called
naive credal classifier (NCC)[Zaffalon, 2002] in order to compute the class-
conditional probability bounds. Note that NCC is not adapted at all to
work with a continuous input space, so we discretize data sets to z = 5 and
z = 6 intervals. Besides, we restrict the values of the hyper-parameter of
the imprecision to s ∈ {0.0, 0.5, 1.5, . . . , 4.5, 5.5} (when s=0.0, NCC becomes
the precise classifier NBC). At higher values of s >>>> 0, the NCC model
will make mostly vacuous predictions (i.e. abstain in all labels ∀i, Yi = ∗)
for the data sets we consider here.

6.4.3 Missing and Noise labels

In this chapter, we consider the same settings as in the previous chapter (c.f.
Section 5.3.3) for missing and noisy labels. We quickly recall the different
levels of missingness and noisiness:

1. Missing percentage of missing labels {0, 20, 40, 60, 80}

2. Noise

(a) Reversing percentage of noisy labels {10, 20, 30, 40, 50, 60}

(b) Flipping percentage of noisy labels {20, 40, 60, 80} and
β ∈ {0.2, 0.5, 0.8}.

6.4.4 Experimental results

We present the results of this section separated into two parts: (1) to
evaluate if we obtain more accurate and precise predictions by injecting
the imprecision, and (2) as the minimax approach applied to our imprecise
model is compared to its precise counterpart.

6.4.4.1 Set-accuracy versus Completeness

The confidence intervals obtained on the results presented in this section
are very small so that we prefer not to display in the figures in order not
to overcharge them.

In Figures 6.6 and 6.7, we provide the results of the set-accuracy and
completeness measures in average (%), respectively, obtained by fitting the
NCC model on different percentage of missing labels applied to the data
sets of Table 6.2 and using the imprecise branching strategy7.

7 The results of the marginalization strategy have been placed in Appendix B.1 in order to
simplify the narrative.
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Figure 6.6: Missing labels - Imprecise Branching Evolution of the average
set-accuracy (%) for each level of imprecision (a curve for each one) and
discretization z = 5 (top) and z = 6 (down), with respect the the percentage
of missing labels.
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Figure 6.7: Missing labels - Imprecise Branching Evolution of the average
completeness (%) for each level of imprecision (a curve for each one) and
discretization z = 5 (top) and z = 6 (down), with respect the the percentage
of missing labels.

The results displayed are those that we expect, and are at the same time
roughly similar to those presented in the previous chapter. Indeed, when
s increases, the set-accuracy (SA) increases as we forget more and more
(as completeness or CP decreases), meaning that the more imprecision we
get, the more accurate are those predictions we retain.
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A significative difference, in contrast to the results of missingness on
Yeast dataset of the previous chapter, is that this latter does not need any-
more a high amount of imprecision to witness a little gain in set-accuracy.
This is certainly due to dependency information which the chain provides
to the future inferred labels.

One noticeable result shows that, in contrast to those results presented
in Chapter 5, a high amount of imprecision is required so that the ground-
truth solution to be within the set-valued of predictions (it is certainly due
to 0/1 loss metric). For instance, with s = 5.5, z = 4 and 40% of missing-
ness, we get a > 65% of set-accuracy versus a < 50% of completeness, in
Emotions data set.

In Figures 6.8 and 6.10, we provide the results of the set-accuracy mea-
sure in average (%) obtained by fitting the NCC model on different per-
centage of Reversing and Flipping settings applied to the data sets of
Table 6.2 and using the imprecise branching strategy.8. Results about its
completeness are given in Figures 6.9 and 6.11.
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Figure 6.8: Reversing - Imprecise Branching Evolution of the average set-
accuracy (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise.

Concerning the Reversing and the Flipping, we encounter roughly the
same findings as in the experiments of Chapter 5, with the only exception
that getting the ground-truth solution amongst the set-valued predictions
is also the hardest than getting a subset (or partial) solution of the ground-
truth one. We can see for instance that the set-accuracy of imprecise setting
(s > 0) produces a poor performance compared with those of the previous

8 The results of the marginalization strategy had been placed in Appendix B.2 and B.3 in
order to simplify the narrative.
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Figure 6.9: Reversing - Imprecise Branching Evolution of the average
completeness (%) for each level of imprecision (a curve for each one) and
two levels of discretization z = 5 (top) and z = 6 (down), with respect to
the percentage of noise.

chapter, but that is quite normal because the incorrectness (IC) penalizes
the individual errors produced by the partially inferred vector (as the
Hamming loss), whereas the set-accuracy (SA) does not so, this latter does
not reward the set-valued predictions if the ground-truth is not within.

5 6

0.2
0.5

0.8

20 40 60 80 20 40 60 80

25%

50%

75%

100%

25%

50%

75%

100%

25%

50%

75%

100%

% Noise

se
t-

ac
cu

ra
cy

Imprecision 0.0
0.5

1.5
2.5

3.5
4.5

5.5

(a) Emotions

5 6

0.2
0.5

0.8

20 40 60 80 20 40 60 80

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

0%

20%

40%

60%

80%

% Noise

se
t-

ac
cu

ra
cy

Imprecision 0.0
0.5

1.5
2.5

3.5
4.5

5.5

(b) Scene

5 6

0.2
0.5

0.8

20 40 60 80 20 40 60 80

0%

25%

50%

75%

0%

25%

50%

75%

0%

25%

50%

75%

% Noise

se
t-

ac
cu

ra
cy

Imprecision 0.0
0.5

1.5
2.5

3.5
4.5

5.5

(c) Yeast

Figure 6.10: Flipping - Imprecise Branching Evolution of the average set-
accuracy (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise.
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Figure 6.11: Flipping - Imprecise Branching Evolution of the average
completeness (%) for each level of imprecision (a curve for each one) and
two levels of discretization z = 5 (top) and z = 6 (down), with respect to
the percentage of noise.

Finally, as regards the comparison of performances on the safety and
not-safety (presented above) approach when they make cautious infer-
ences, we can note a slight difference among them in terms of the set-
accuracy metric (and, consequently, the completeness as well). The perfor-
mance of the safety approach is slightly better (or worse) as the amount of
imprecision increases, depending on the data set, than the not-safety one.
This difference can also be found in all different settings, either with miss-
ing or noisy labels, or with imprecise-branching or maginalization strategy.
Hence, in order not to overload this section with more illustrations, and
besides the interest of using the safety approach is to infer more precise-
valued inferences with low uncertainty, we thus prefer to put a single set-
up, namely marginalization strategy with missing labels, in Figures B.3
and B.4 (the set-accuracy and completeness, respectively) of Appendix B.1.

6.4.4.2 CC versus ICC using minimax strategy

The average performance of the minimax approach for the imprecise
branching strategy (IB) obtained in terms of the SE measure and using the
safety imprecise chaining9 or not are shown in Figure 6.12, 6.13 and 6.14

for the missing, reversing and flipping settings respectively, with two

9 As results obtained with the maginalization strategy are roughly similar, we preferred
to put them in Appendix B.1, B.2 and B.3, with all different imprecise levels, in order to
simplify the interpretation.
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imprecise levels10 s ∈ {0.5, 1.5}, applied to our imprecise approach (ICC)
(resp. precise approach (CC)).
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Figure 6.12: Missing - ICC versus CC - Imprecise Branching. Figures
show performance evolution (%) of the imprecise and precise classifier-
chains approaches for 0.5 (left) and 1.5 (right) levels of imprecisions and
using the safety imprecise chaining (top) and not (down), with respect to
the percentage of missing (x-axis).

The overall results showed on all different settings give a clear evidence
that including a light level of imprecision in our imprecise approach using
the safety imprecise chaining gives overall comparable results when con-
sidering precise, minimax predictions, while significantly increasing accu-
racy when considering partial predictions. In contrast, when we do not
use the safety imprecise chaining, the precise approach overcomes ours,
more specifically in the case of the missing labels, it seems that the mini-
max strategy and the addition of imprecision actually degrade the results,
which is surprising and worthy of further investigations (e.g. using other
strategies as maximin or more complex ones with theoretical justifications).
In addition, interestingly though, our strategy seems to be more robust to
the presence of high noise in the data, as we systematically outperform
the precise chaining when the labels are affected by 6 60% (depending on
the level of imprecision and strategy used (MAR) or (IB)). Future works
will aim at achieving a deeper investigation of this result, but we can al-
ready see that chosing the right ordering may be even more important in
an imprecise setting.

One quite noticeable result that we can also note with respect the min-
imax approach is that the more the set-accuracy increases, the more the

10We could have optimised on s, but it seemed unfair compared to the precise approach
that does not benefit from this hyper-parameter.
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Figure 6.13: Reversing - ICC versus CC - Imprecise Branching Figures
show performance evolution (%) of the imprecise and precise classifier-
chains approaches for 0.5 (left) and 1.5 (right) levels of imprecisions, and
using the safety imprecise chaining (top) and not (down), with respect to
the percentage of noisy (x-axis).

minimax accuracy worsen in the missing setting, and an inverse result is
found in the noise setting. Finally, another interesting result about the
noisy setting is that when the labels are more noisy with irrelevant values
Yi,j = 0, i.e. β = 0.2 a low probability to be relevant Yi,j = 1, our proposal
ICC is roughly comparable to CC with a low amount of imprecision and
it begins to degrade in performance as the imprecision increases (for more
details, see Figure B.13 of Appendix B.3).

All those results, however, only provide a proof of concept for our
methodology, and are also obtained with a classifier which, through its
independence assumption, makes imprecise chaining computationally ef-
ficient but limits the benefits of using a chaining approach.

6.5 conclusions

In this chapter, we have introduced initial ideas to adapt the classical
chaining algorithms of multi-label problems to the case of imprecise or
set-valued probabilities. Such an idea is indeed promising to tamper the
usual biases of picking a particular branch in the chain.

However, much remains to be done, as how come up with a decision
criterion, as the minimax approach, with theoretical results that guarantee
a better precise prediction. Indeed, while the Naive credal classifier makes
them easy to solve thanks to its assumptions, the same assumptions may
be the reason for our mitigated results. It seems therefore essential, in
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Figure 6.14: Flipping - ICC versus CC - Imprecise Branching Figures
show performance evolution (%) of the imprecise and precise classifier-
chains approaches for 0.5 (left) and 1.5 (right) levels of imprecisions, and
β = 0.8, and using the safety imprecise chaining (top) and not (down),
with respect to the percentage of noisy (x-axis).

future works, to investigate other classifiers as well as to solve optimisation
issues.

Note that for practical purposes, we consider a precise marginal distri-
bution PY in the set of our experiments, but it is well known that multi-
label data sets come with a higher class-imbalance among labels, e.g with
7% relevant and 93% irrelevant labels. But due to lack of time, we could
not relax this constraint and carry out a in-depth analysis.

An open issue of particular interest is about whether the binary de-
cision of Equation (6.2) is not too penalizing when the lower or upper
probabilities are too close of 0.5. For instances, for two labels Yi and Yj
with intervals of probabilities [0.51, 0.59] and [0.49, 0.70], respectively, Yi
will be inferred as relevant label whereas Yj will be inferred as abstained
label, yet Yj may also be considered as relevant since the odds is higher. So,
a future work might just be focused in as handling this matter, by using
other decision criteria or a hyper-parameter on the model.

Finally, a last open issue is how we can use or extend the existing heuris-
tics of probabilistic classifier approaches on our proposal strategies, such
as epsilon-approximate inference, A∗ and beam search methods [Mena et
al., 2016; Kumar et al., 2013]. These heuristics explore multiple path in
the tree, so it might be interesting to extend to an imprecise probabilistic
setting.
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Appendix A
Complementary experimental

results of IGDA model

a.1 performance evolution w.r .t. utility-discount and c

parameter

Complementary experimental results are shown in the Figure A.1, A.2 and
A.3
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Figure A.1: Experiments for IGDA model (left:utility-discount u65,
right:utility-discount u80)
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Figure A.2: Experiments for IGDA model (left:utility-discount u65,
right:utility-discount u80)
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Figure A.3: Experiments for IGDA model (left:utility-discount u65,
right:utility-discount u80)
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a.2 complementary experiments results on disturbed syn-
thetic test data

Complementary experimental results using the ε noise parameter to cor-
rupt test instances are shown in the Figure A.4, A.5, A.6 and A.7.
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(a) (Imprecise) Euclidian discriminant analysis
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(b) (Imprecise) Linear discriminant analysis
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(c) (Imprecise) Naive discriminant analysis
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(d) (Imprecise) Quadratic discriminant analysis

Figure A.4: Utility accuracies (%) with confidence intervals on corrupt test
data sets Tε1 . The first column (D10

1 ), the second column (D25
1 ) and the

third column (D50
1 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.5: Utility accuracies (%) with confidence intervals on corrupt test
data sets Tε2 . The first column (D10

2 ), the second column (D25
2 ) and the

third column (D50
2 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.6: Utility accuracies (%) with confidence intervals on corrupt test
data sets Tε3 . The first column (D10

3 ), the second column (D25
3 ) and the

third column (D50
3 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.7: Utility accuracies (%) with confidence intervals on corrupt test
data sets Tε4 . The first column (D10

4 ), the second column (D25
4 ) and the

third column (D50
4 ). In each row a different Gaussian classifier model is

fitted.
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Complementary experimental results using the ψ noise parameter to
corrupt test instances are shown in theFigure A.8, A.9, A.10 and A.11.
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Figure A.8: Utility accuracies (%) with confidence intervals on corrupt test
data sets T

ψ
1 . The first column (D10

1 ), the second column (D25
1 ) and the

third column (D50
1 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.9: Utility accuracies (%) with confidence intervals on corrupt test
data sets T

ψ
2 . The first column (D10

2 ), the second column (D25
2 ) and the

third column (D50
2 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.10: Utility accuracies (%) with confidence intervals on corrupt
test data sets T

ψ
3 . The first column (D10

3 ), the second column (D25
3 ) and the

third column (D50
3 ). In each row a different Gaussian classifier model is

fitted.
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Figure A.11: Utility accuracies (%) with confidence intervals on corrupt
test data sets T

ψ
4 . The first column (D10

4 ), the second column (D25
4 ) and the

third column (D50
4 ). In each row a different Gaussian classifier model is

fitted.
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Appendix B
Complementary experimental
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Figure B.1: Missing labels - Marginalization Evolution of the average set-accuracy (%)
for each level of imprecision (a curve for each one) and discretization z = 5 (top) and
z = 6 (down), with respect the the percentage of missing labels.
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Figure B.2: Missing labels - Marginalization Evolution of the average completeness (%)
for each level of imprecision (a curve for each one) and discretization z = 5 (top) and
z = 6 (down), with respect the the percentage of missing labels.
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Figure B.3: Missing labels - Marginalization - Safety imprecise Evolution of the average
set-accuracy (%) for each level of imprecision (a different shape point and color for each
one), and safety imprecise chaining in dotted line and not-safety one in solid line, and
discretization z = 5 (top) and z = 6 (down), with respect the the percentage of missing
labels.
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Figure B.4: Missing labels - Marginalization - Safety imprecise Evolution of the average
set-accuracy (%) for each level of imprecision (a different shape point and color for each
one), and safety imprecise chaining in dotted line and not-safety one in solid line, and
discretization z = 5 (top) and z = 6 (down), with respect the the percentage of missing
labels.



B.1 missing precise 147

0.5 1.5 2.5 3.5 4.5 5.5

S
a

fe
ty

N
o

t-S
a

fe
ty

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

25%

50%

75%

100%

25%

50%

75%

100%

% Missing

A
cc

ur
ac

y
Models: Set-accuracy ICC (minmax) CC

(a) Emotions

0.5 1.5 2.5 3.5 4.5 5.5

S
a

fe
ty

N
o

t-S
a

fe
ty

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0%

25%

50%

75%

0%

25%

50%

75%

% Missing

A
cc

ur
ac

y

Models: Set-accuracy ICC (minmax) CC

(b) Scene

Figure B.5: Missing - ICC versus CC - Marginalization. Figures show
performance evolution (%) of the imprecise and precise classifier-chains
approaches for all levels of imprecision and using the safety imprecise
chaining (top) and not (down), with respect to the percentage of missing
(x-axis).
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Figure B.6: Missing - ICC versus CC - Marginalization. continuation of
Figure B.5
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Figure B.7: Reversing - Marginalization Evolution of the average set-
accuracy (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise
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Figure B.8: Reversing - Marginalization Evolution of the average com-
pleteness (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise

0.5 1.5 2.5 3.5 4.5 5.5

S
a

fe
ty

N
o

t-S
a

fe
ty

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

% Noise

A
cc

ur
ac

y

Models: Set-accuracy ICC (minmax) CC

(a) Emotions

Figure B.9: Reversing - ICC versus CC - Marginalization. Figures show
performance evolution (%) of the imprecise and precise classifier-chains
approaches for all levels of imprecision and using the safety imprecise
chaining (top) and not (down), with respect to the percentage of noiseness
(x-axis).
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Figure B.10: Missing - ICC versus CC - Marginalization. continuation of
Figure B.9
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Figure B.11: Flipping - Marginalization Evolution of the average set-
accuracy (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise.
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Figure B.12: Flipping - Marginalization Evolution of the average com-
pleteness (%) for each level of imprecision (a curve for each one) and two
levels of discretization z = 5 (top) and z = 6 (down), with respect to the
percentage of noise.



152 B.3 noisy flipping

0.5 1.5 2.5 3.5 4.5
S

a
fe

ty
N

o
t-S

a
fe

ty

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

25%

50%

75%

25%

50%

75%

% Missing

A
cc

ur
ac

y

Models: Set-accuracy ICC (minmax) CC

(a) Emotions

0.5 1.5 2.5 3.5 4.5

S
a

fe
ty

N
o

t-S
a

fe
ty

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

20%

40%

60%

20%

40%

60%

% Missing

A
cc

ur
ac

y

Models: Set-accuracy ICC (minmax) CC

(b) Scene

Figure B.13: Flipping - ICC versus CC - Marginalization. Figures show
performance evolution (%) of the imprecise and precise classifier-chains
approaches for 0.5 (left) and 1.5 (right) levels of imprecisions, and β =
0.2, and using the safety imprecise chaining (top) and not (down), with
respect to the percentage of noisy (x-axis).
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Figure B.14: Flipping - ICC versus CC - Marginalization. continuation of
Figure B.13
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Figure B.15: Flipping - ICC versus CC - Marginalization Figures show
performance evolution (%) of the imprecise and precise classifier-chains
approaches for 0.5 (left) and 1.5 (right) levels of imprecisions, and β =
0.5, and using the safety imprecise chaining (top) and not (down), with
respect to the percentage of noisy (x-axis).
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Figure B.16: Flipping - ICC versus CC - Marginalization. continuation of
Figure B.15
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Figure B.17: Flipping - ICC versus CC - Marginalization. Figures show
performance evolution (%) of the imprecise and precise classifier-chains
approaches for 0.5 (left) and 1.5 (right) levels of imprecisions, and β =
0.8, and using the safety imprecise chaining (top) and not (down), with
respect to the percentage of noisy (x-axis).
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Figure B.18: Flipping - ICC versus CC - Marginalization. continuation of
Figure B.17
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Cheng, Weiwei, Eyke Hüllermeier, Willem Waegeman, and Volkmar
Welker (2012). “Label ranking with partial abstention based on thresh-
olded probabilistic models”. In: Advances in neural information processing
systems, pp. 2501–2509 (cited on p. 26).

Clarke, Bertrand S and Jennifer L Clarke (2018). Predictive Statistics: Anal-
ysis and Inference beyond Models. Vol. 46. Cambridge University Press
(cited on p. 4).

Coolen, FPA (1993). “Imprecise conjugate prior densities for the one-
parameter exponential family of distributions”. In: Statistics &
probability letters 16.5, pp. 337–342 (cited on p. 27).

Corani, Giorgio and Marco Zaffalon (2008a). “Credal model averaging: an
extension of Bayesian model averaging to imprecise probabilities”. In:
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, pp. 257–271 (cited on p. 27).

— (2008b). “Learning reliable classifiers from small or incomplete data
sets: the naive credal classifier 2”. In: Journal of Machine Learning Re-
search 9.Apr, pp. 581–621 (cited on pp. 27, 101).

Corani, Giorgio and Alessandro Antonucci (2014). “Credal ensembles of
classifiers”. In: Computational Statistics & Data Analysis 71, pp. 818–831

(cited on p. 28).
Corani, Giorgio and Andrea Mignatti (2015). “Credal model averaging for

classification: representing prior ignorance and expert opinions”. In:



160 bibliography

International Journal of Approximate Reasoning 56, pp. 264–277 (cited on
p. 27).

Dalton, Lori A. and Mohammadmahdi R. Yousefi (2015). “On optimal
Bayesian classification and risk estimation under multiple classes”. In:
EURASIP Journal on Bioinformatics and Systems Biology 2015.1, p. 8. issn:
1687-4153 (cited on pp. 7, 38).

De Angelis, Pasquale L, Panos M Pardalos, and Gerardo Toraldo (1997).
“Quadratic programming with box constraints”. In: Developments in
global optimization. Springer US, pp. 73–93 (cited on p. 47).

De Cooman, Gert and Filip Hermans (2008). “Imprecise probability trees:
Bridging two theories of imprecise probability”. In: Artificial Intelligence
172.11, pp. 1400–1427 (cited on p. 115).
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