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Multi-label classification problem
+ The goal of multi-label problem :

Given a training data : D = {x i ,y i }N
i=0 ⊆Rp ×Y

where : Y = {0,1}m, |Y | = 2m

Learning a multi-label classification rule : ϕ :Rp →Y

+ Example :
Classical classification Multi-label classification
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Existing results for precise and cautious1 inferences
, Inference in precise case difficult, but there are

3 Efficient algorithms for specific losses [... ; DEMBCZYŃSKI et al. 2012 ;
WAEGEMAN et al. 2014]

3 Several simplified learning model : Binary relevance, Classifier
chains [READ et al. 2019], ...

# This issue is poorly explored in IP [DESTERCKE 2015 ; ANTONUCCI

et al. 2017], and even less in other cautious settings [NGUYEN et al.
2019 ; PILLAI et al. 2013].

, Our contribution consists in providing :
- More efficient, dedicated algorithm for the Hamming Loss under

the maximality criterion.
- Polynomial-time inference on restricted credal sets PPR (impre-

cise Binary relevance).
1. Cautious and Skeptical are here used interchangeably.
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Cautious inferences in form of set-valued solutions

CAUTIOUS CLASSIFICATION

INFERENCE
STEP Ë

LEARNING MODEL
STEP Ê

PARTIAL ORDERING

ma

mc

mb
md

me

Ŷ={ma,mc}

CREDAL MODEL

P :={
P|P:X ×Θ→K

}

+ Problem setting and challenges :

3 Step Ê : The uncertainty model P is known.
7 Step Ë : Under the maximality criterion and a generic loss matrix

=⇒the set-valued solutions require at worst 2m(2m−1)∝22m computations.

+ Example : |Y | = 10, it needs to 210(210−1)= 1047552 computations.

(0,0, . . . ,0)ÂP
` (0, . . . ,1,1) ?

(0,0, . . . ,0)ÂP
` (0, . . . ,1,0) ?

...
...

...
...

	 A set-valued solution

ŶM
`,P =

1 1 0 . . . 0
0 1 1 . . . 0
0 0 0 . . . 0


- Can we obtain cautious predictions efficiently?

12th International Symposium on Imprecise Probabilities Theories and Applications 6



Multi-label classification problem Cautious Inferences in ML Conclusions and Perspectives Références
General case for the Hamming loss Experimental results

General case for the Hamming case
Proposition 1 (Ceteris paribus comparison)
For a given set of indices I ⊆ �m�, let us consider an assignment aI

and its complement aI . Then, for any two vectors y1,y2 such that
y1

I = aI , y2
I = aI and y1

−I = y2
−I , we have

y1 ÂP
` y2 ⇐⇒ inf

P∈P

∑
i∈I

P(Yi = ai)>
|I |
2

(1)

Prop. 1 amounts to focus on partial binary
vector, e.g. |Y | = n+3,a = (0,0,0,∗, . . . ,∗)

(0,0,0,∗, . . . ,∗︸ ︷︷ ︸
n labels

)ÂP
`H

(1,1,1,∗, . . . ,∗︸ ︷︷ ︸
n labels

)

1 comparaison instead of 2n.

3 We can reduce : O(22m)−→O(3m)
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Existing approximate results for Hamming loss
l The partial vector ŷ∗ = (ŷ∗

1 , . . . , ŷ∗
m) ∈Y= {0,1,∗}

ŷ∗
j =


1 if Px∗(Yj = 1)> 0.5
0 if Px∗(Yj = 1)< 0.5
∗ if 0.5 ∈ [Px∗(Yj = 1),Px∗(Yj = 1)]

is an outer-approximation of ŶM
`H ,P [DESTERCKE 2015]

l Only requires to know imprecise marginal bounds PYi on each label.

l Note that not all cautious multi-label predictions can be exactly
represented as a partial vector1 1 0

0 1 1
0 0 0

 =⇒ cannot be

represented in Y


1 1 0
0 1 0
1 0 0
0 0 0

= (∗,∗,0) ∈Y
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Exact ŶM
`H ,P vs. ŷ∗outer-approximation inferences
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where ŷ∗ = ŶM

`H ,P .

3 The quality of ŷ∗ decreases as the number of labels increases.

3 The quality of ŷ∗ seems to be the worst for moderate imprecision.
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3 The quality of ŷ∗ decreases as the number of labels increases.

3 The quality of ŷ∗ seems to be the worst for moderate imprecision.

What are the conditions on P ensuring

ŷ∗ = ŶM
`H ,P?
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Binary relevance and partial vectors

Under the assumption of label independence :

PBR :=
{ ∏

{i |yi=1}
pi

∏
{i |yi=0}

(1−pi)

∣∣∣∣∣pi ∈ [pi
,pi ]

}
.

Proposition 2 (Domain restriction on P)

Given a probability set PBR and the Hamming loss, ŶM
`H ,PBR

∈Y.

3 ŶM
`H ,PBR

can be represented as partial vector Y.

3 ŶM
`H ,PBR

is equal to outer-approximation ŷ∗ [DESTERCKE 2015].

3 The time complexity becomes linear on m, i.e. O(m) !
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Dataset and experimental setting
Material/Imprecise Classifier/Metrics
+The data set issued from MULAN repository.

Data set #Features #Labels #Instances #Cardinality #Density
emotions 72 6 593 1.90 0.31

yeast 103 14 2417 4.23 0.30
scene 294 6 2407 1.07 0.18

+ Naive credal classifier (NCC) [ZAFFALON 2002] for each marginal credal PYi .
+ Metric evaluations : (Q denotes the set of predicted label s.t. ŷi = 1 or ŷi = 0)

IC(Ŷ,y)= 1
|Q|

∑
ŷi∈Q

1(ŷi 6=yi) and CP(Ŷ,y)= |Q|
m

Missing labels
We uniformly pick at random a percentage of
missing labels Yi ,j (the j th label of the i th ins-
tance) which are then removed from the trai-
ning data, i.e. Yi ,j = 1∧0−→Yi ,j =∗

Features Missing
X1 X2 X3 X4 X5 Y1 Y2 Y3

107.1 25 Blue 60 1 1 * 0
-50 10 Red 40 0 1 0 *

200.6 30 Blue 58 1 * 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
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7 The precise model (s=0.0) is not really affected by randomly missing labels.

, Our proposal, however, becomes more cautious as the number of missing
labels increases.
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Conclusions and Perspective

¶ Works done in this paper :

, Provide efficient algorithmic procedures to solve the maximality
criterion under Hamming loss and generic probability sets.

, When considering sets of distributions and cautious inferences, it
is not sufficient to consider marginal probabilities to get exact
set-valued predictions, as opposed to the case of precise
distributions.

· What remains to do

8 Compare our proposal against those rejecting and abstaining
approaches.

8 Solve the maximality criterion using other loss functions, e.g. ;
ranking loss, Jaccard loss, F-measure, and so on.
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