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(1) Problem statement
Setting: Let us consider that we have:

¬ a training data set D ,
 an uncertainty model P fitted to D ,
® the Hamming loss `H and
¯ the maximality criterion �P

`H
.





=⇒
Goals:
¬ Making skeptical decisions Y ⊆ Y .
 Reducing the time complexity of

the inference-step, i.e. O(22m).

X1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5 Y6

0.34 0 34 174 1 0 1 0 1 1
0.54 1 4 434 1 1 1 0 0 1
1.44 0 14 574 0 0 0 0 1 1
3.44 1 45 584 1 1 1 0 0 0
4.94 1 6 884 0 1 1 0 1 0

Table 1: Example of a data set D
How can we obtain Skeptical Binary Inferences?:

Imprecise Supervised Classification Approach

Given an uncertainty model defined as
a set of distributions P and fitted to
the training data set:

D = {xi,yi}Ni=0 ⊆ Rp×Y , Y = {0, 1}m.
We want make a skeptical inference for
a new observation (xi, ?). (see fig. →).

Statistical Population

D
T

Cautious
classification

Skeptical Inference

Step Ë

Learning Model

Step Ê

(xi,yi)

(xi, ?)

Partial ordering

ya

yc
yb

yd

ye
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Distributionally Robust, Skeptical inferences

Focus of this work

(2) Skeptic Inference for Hamming loss
Definition (Maximality)[4, 3]
Maximality consists in returning the maximal, non-dominated elements of the partial
order �P

` such that y �P
` y′ if

E [`(y′, ·)− `(y, ·)]:= inf
P∈P

EP [`(y′, ·)− `(y, ·)] > 0, (1)

that is if exchanging y′ for y is guaranteed to give a positive expected loss. The
maximality rule returns the prediction set

ŶM
`,P =

{
y ∈ Y

∣∣ 6 ∃y′ ∈ Y s.t. y′ �P
` y

}
. (2)

Definition (Hamming Loss)
The Hamming loss amounts to compute
the Hamming distance between the ground
truth y and a prediction ŷ, that is

`H(ŷ,y) =

m∑

i=1

1(ŷi 6=yi) = |Iŷ 6=y| (3)

Lemma 1
In the case of Hamming loss and given y1,y2, we have that: E

[
`H(y2, ·)− `H(y1, ·)

]
=
∑m

i=1P (Yi = y1
i )− P (Yi = y2

i )

(3) General case
Proposition 3 (Ceteris paribus comparison)
For a given set of indices I ⊆ JmK, let us consider an assignment aI and its
complement aI . Then, for any two vectors y1,y2 such that y1

I = aI , y2
I = aI

and y1
−I = y2

−I , we have

y1 �M y2 ⇐⇒ inf
P∈P

∑

i∈I

P (Yi = ai) >
|I |
2

(4)

Example (Imprecise tree model P)
Let us consider the imprecise tree model in the bottom right. Applying Prop. 3,
we have E [`H((1, ∗), ·)] = 0.444 > 0.5 =⇒ (0, ∗) 6�M (1, ∗),

E [`H((0, ∗), ·)] = 0.456 > 0.5 =⇒ (1, ∗) 6�M (0, ∗),
E [`H((∗, 1), ·)] = 0.498 > 0.5 =⇒ (∗, 0) 6�M (∗, 1),

E [`H((∗, 0), ·)] = 0.354 > 0.5 =⇒ (∗, 1) 6�M (∗, 0),

E [`H((1, 1), ·)] = 0.942 > 1.0 =⇒ (0, 0) 6�M (1, 1),

E [`H((1, 0), ·)] = 0.846 > 1.0 =⇒ (0, 1) 6�M (1, 0),

E [`H((0, 1), ·)] = 1.001 > 1.0 =⇒ (1,0) �M (0,1),

E [`H((0, 0), ·)] = 0.810 > 1.0 =⇒ (1, 1) 6�M (0, 0).

We get 32 − 1 = 8 comparisons and skeptical inference is the set

ŶM
`H,P = {(1, 0), (0, 0), (1, 1)}

Prop. 3 amounts to focus on partial binary
vector, e.g. |Y | = n + 3,a = (0, 0, 0, ∗, . . . , ∗)

(0, 0, 0, ∗, . . . , ∗︸ ︷︷ ︸
n labels

) �P
`H

(1, 1, 1, ∗, . . . , ∗︸ ︷︷ ︸
n labels

)

1 comparaison instead of 2n.
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Remark
Let us define a partial-binary vector space as

Y = {0, 1, ∗}m

and not every solution ŶM
`H,P

can not be rep-
resented as a partial-binary vector Y.
How can we obtain ŶM

`H,P∗ ∈ Y?

(4) Binary relevance and partial vectors
Under the assumption of label independence, i.e. Y1 ⊥ Y2 · · · ⊥ Ym:

PBR :=




∏

{i|yi=1}
pi
∏

{i|yi=0}
(1− pi)

∣∣∣∣∣∣
pi ∈ [p

i
, pi], pi := P (Yi = yi|X = x)



 .

Proposition 8 (Domain restriction on P)

Given a probability set PBR and the Hamming loss `H, the set ŶM
`H,PBR

∈ Y.

3 ŶM
`H,PBR

can be represented as partial vector Y.

3 ŶM
`H,PBR

is equal to known outer-approximation [1].

3 The time complexity of skeptical inference
becomes linear on m, i.e. O(m)!

(5) Experiments and results
Setting: The imprecise tree model (see App. 1) is here used to represent our credal set P (but our results hold for any credal).

Exact vs approximate skeptic inference
Goal: Evaluate how accurate the outer-approximation [1] ŷ∗`H,P is in comparison to our exact

estimation of the set ŶM
`H,P

.
Setting:

+ We simulate imprecise binary trees P using an imprecise parameter ε.

+ Metric evaluation (how large is ŷ∗?): dε(ŷ∗, Ŷ) = |ŷ∗`H,P| − |ŶM
`H,P
|..

Results: The quality ŷ∗`H,P decreases as the number of labels increases and seems to be the
worst for moderate imprecision.
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Figure 1: % of instances where ŷ∗ = ŶM`H,P .

Skeptic inference with Binary relevance

Goal: We investigate what happens when some labels are missing.
Results: The precise model (s=0.) is not really affected by ran-
domly missing labels, whereas our proposal becomes more cautious
as the number of missing labels increases.

Setting: + Incorrectness and Completness (Q denotes the set of
predicted label s.t. ŷi = 1 or ŷi = 0).

IC(Ŷ,y) =
1

|Q|
∑

ŷi∈Q
1(ŷi 6=yi) and CP (Ŷ,y) =

|Q|
m
.

+ Missing labels pick at random a percentage of {20, 40, 60, 80}.
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(c) Scene dataset
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(f) Yeast dataset

(6) Conclusion and Perspectives
+ Works done since submission of ISIPTA paper:

, We provide efficient procedures to solve the maximality criterion under Hamming loss and generic
probability sets.

, When considering sets of distributions and cautious inferences, it is not sufficient to consider
marginal probabilities to get exact set-valued predictions, as opposed to the case of precise
distributions.

, We provide new implications (an implication A→B means that A⊂B) for the different decision
criteria, namely Maximality, E-admissibility, Γ-minimax, Γ-minimin and Interval Dominance, when
we use the restricted probability set PBR and the Hamming loss `H (see Fig.2)

+ What remains to finish (or in progress):

8 Compare our proposal against those rejecting and abstaining approaches.

8 Solve the maximality criterion using other loss functions, e.g.; Ranking loss and F-measure.

ŷΓmin

`H,PBR
ŷΓmax

`H,PBR

ŶE`H,PBR
ŶM`H,PBR

ŶID`H,PBR

Figure 2: Decision relation un-
der a PBR and a `H . In red
arrow, the new implications.
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Appendix 1 - Example - Imprecise probabilistic tree and lower expected loss

Inference in binary trees [2]: For computing the infimum expectation given an
assignment aI , we use the law of iterated lower expectation [2]:

EY [`H(·, aI)] = EY1
[
EY2

[
. . .EYm

[
`H(·, aI)

∣∣∣YIJm−1K

]
. . .
]∣∣∣
]
.

Proposition 4
For a given set I of indices, an assignment aI and its complement aI . We have

inf
P∈P

∑

i∈I
P (Yi = ai) = E[`∗H(aI , ·)] (5) y1 = 1

(y1=1, y2=1)
[0.613,0.713]

(y1=1, y2=0)
[0.28

7, 0.3
87]

[0.456, 0.556]

y1 = 0

(y1=0, y2=1)
[0.138,0.238]

(y1=0, y2=0)
[0.76

2, 0.8
62]

[0.4
44,

0.5
44

]

E = 0.287 · 1

E = 0.238 · −1

E = 0.544 · −0.238 + 0.456 · 0.287 > 0

`0/1 ((0, 1), ·)− `0/1 ((1, 0), ·) =

0

−1

1

0


