Distributionally Robust, Skeptical Binary Inferences in Multi-label Problems
 YC. Carranza-Alarcón, Sébastien Destercke

\{yonatan-carlos.carranza-alarcon, sebastien.destercke\}@hds.utc.fr
$\left\{\begin{array}{l}\text { Setting: Let us consider that we have: } \\ \text { (1) a training data set } \mathscr{D}, \\ \text { (2) an uncertainty model } \mathscr{P} \text { fitted to } \mathscr{D}, \\ \text { (3) the Hamming loss } \ell_{H} \text { and } \\ \text { (4) the maximality criterion } \succ_{\ell_{H}}^{\mathscr{P}} .\end{array}\right\}$
Goals:
(1) Making skeptical decisions $\mathbb{Y} \subseteq \mathscr{Y}$
2) Reducing the time complexity of
the inference-step, i.e. $\mathscr{O}\left(2^{2 m}\right)$

How can we obtain Skeptical Binary Inferences?:
Imprecise Supervised Classification Approach
Given an uncertainty model defined as the training data set:
$\mathscr{D}=\left\{\boldsymbol{x}^{i}, \boldsymbol{y}^{i}\right\}_{i=0}^{N} \subseteq \mathbb{R}^{p} \times \mathscr{Y}, \mathscr{Y}=\{0,1\}^{m}$ We want make a skeptical inference for

$$
\underline{\mathbb{E}}\left[\ell\left(\boldsymbol{y}^{\prime}, \cdot\right)-\ell(\boldsymbol{y}, \cdot)\right]:=\inf _{P \in \mathscr{P}} \mathbb{E}_{P}\left[\ell\left(\boldsymbol{y}^{\prime}, \cdot\right)-\ell(\boldsymbol{y}, \cdot)\right]>0
$$

that is if exchanging \boldsymbol{y}^{\prime} for \boldsymbol{y} is guaranteed to give a positive expected loss. Th maximality rule returns the prediction set

Definition (Hamming Loss)

the Hamming distance betwe the Hamming distance between the ground truth \boldsymbol{y} and a prediction $\hat{\boldsymbol{y}}$, that is

$$
\ell_{H}(\hat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i=1}^{m} \mathbb{1}_{\left(\hat{\boldsymbol{y}}_{\boldsymbol{i}} \neq y_{i}\right)}=\left|\mathcal{I}_{\hat{\boldsymbol{y}} \neq \boldsymbol{y}}\right|
$$

Lemmal

Proposition 3 (Ceteris paribus comparison)

complement $\overline{\boldsymbol{a}}_{\mathscr{I}}$. Then, for any two vectors $\boldsymbol{y}^{1}, \boldsymbol{y}^{2}$ such that $\boldsymbol{y}_{\mathscr{I}}^{1}=\boldsymbol{a}_{\mathscr{I}}, \boldsymbol{y}_{\mathscr{I}}^{2}=\overline{\boldsymbol{a}}_{\mathscr{I}}$ and $\boldsymbol{y}_{-\mathscr{I}}^{1}=\boldsymbol{y}_{-\mathscr{I}}^{2}$, we have

$$
\underset{y^{1}>M}{\substack{\text { we have } \\ y^{2}}} \Leftrightarrow \inf _{P \in \Phi_{\mathcal{O}}} \sum_{i \in \mathcal{Y}} P\left(Y_{i}=a_{i}\right)>\frac{\mid \mathscr{P}}{2}
$$

Example (Imprecise tree model \mathscr{P})

Le $\mathbb{E}\left[\ell_{H}((1, *), \cdot)\right]=0.444>0.5 \Longrightarrow(0, *) \nsucc_{M}(1, *)$, $\underline{\mathbb{E}}\left[\ell_{H}((0, *), \cdot)\right]=0.456>0.5 \Longrightarrow(1, *) \nsucc_{M}(0, *)$, $\underline{E}\left[\ell_{H}((*, 1), \cdot)\right]=0.498>0.5 \Longrightarrow(*, 0) \nsucc_{M}(*, 1)$, $\mathbb{E}\left[\ell_{H}((*, 0), \cdot)\right]=0.354>0.5 \Longrightarrow(*, 1) \nsucc_{M}(*, 0)$, $\mathbb{E}\left[\ell_{H}((1,1), \cdot)\right]=0.942>1.0 \Longrightarrow(0,0) \nsucc_{M}(1,1)$, $\underline{\mathbb{E}}\left[\ell_{H}((1,0), \cdot)\right]=0.846>1.0 \Longrightarrow(0,1) \nsucc_{M}(1,0)$, $\mathbb{E}\left[\ell_{H}((0,1), \cdot)\right]=1.001>1.0 \Longrightarrow(\mathbf{1}, \mathbf{0}) \succ_{M}(\mathbf{0}, \mathbf{1})$, $\mathbb{E}\left[\ell_{H}((0,0), \cdot)\right]=0.810>1.0 \Longrightarrow(1,1) \nsucc_{M}(0,0)$. We get $3^{2}-1=8$ comparisons and skeptical inference is the set

$$
\hat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}}^{M}=\{(1,0),(0,0),(1,1)\}
$$

Prop. 3 amounts to focus on partial binary , e.g. $|\mathscr{Y}|=n+3, \boldsymbol{a}=(0,0,0$,
\qquad

 Remark Let us define a partial-binary vector space as $\mathfrak{Y}=\{0,1, *\}^{m}$ and not every solution $\hat{\mathbb{Y}}_{\ell_{H}, \mathscr{\mathscr { P }}}^{M}$ can not be represented as a partial-binary vector \mathfrak{Y}. How can we obtain $\hat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}^{*}}^{M} \in \mathfrak{Y}$?

References

Sebastien Destercke. Multilabel
[2] Filip Her 1), $3757-3765,2015.10$. [2] Filip Hermans, Erik Quaeghebeur, et al. Imprecise
and Informational Sciences, 23(4):597-635, 2009
:597-635, 200
3] Matthias CM Troffaes. Decision making under uncertainty using imprecise probabilities. International Journal of Approx (4) P. Walley. Statistical reasoning with imprecise Probabilities. Chapman and Hall, 1991.

(4) B

Under the assumption of label independence, i.e. $Y_{1} \perp Y_{2} \cdots \perp Y_{m}:$
$\mathscr{P}_{B R}:=\left\{\prod_{\left\{i \mid y_{i}=1\right\}} p_{i} \prod_{\left\{i \mid y_{i}=0\right\}}\left(1-p_{i}\right) \mid p_{i} \in\left[\underline{p}_{i}, \bar{p}_{i}\right], p_{i}:=P\left(Y_{i}=y_{i} \mid X=x\right)\right\}$.
Proposition 8 (Domain restriction on $\mathscr{P})$

Given a probability set $\mathscr{P}_{B R}$ and the Hamming loss ℓ_{H}, the set $\widehat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}_{B R}}^{M} \in \mathfrak{Y}$.
$\checkmark \widehat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}_{B R}}^{M}$ can be represented as partial vector \mathfrak{Y}. $\checkmark \widehat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}_{B R}}^{M}$ is equal to known outer-approximation [1]. \checkmark The time complexity of skeptical inference becomes linear on m, i.e. $\mathcal{O}(m)$!

(5) Experiments and results

Setting: The imprecise tree model (see App. 1) is here used to represent our credal set \mathscr{P} (but our results hold for any credal), Exact vs approximate skeptic inference
Goal: Evaluate how accurate the outer-approximation $[1] \widehat{\boldsymbol{y}}_{\ell_{H}, \mathscr{P}}^{*}$ is in comparison to our exact
estimation of the set $\widehat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}}^{M}$
Setting:
${ }^{5}$ We simulate imprecise binary trees \mathscr{P} using an imprecise parameter ϵ.
Metric evaluation (how large is $\widehat{\boldsymbol{y}}^{*}$?): $d^{\epsilon}\left(\widehat{\boldsymbol{y}}^{*}, \widehat{\mathbb{Y}}\right)=\left|\widehat{\boldsymbol{y}}_{\ell_{H}, \mathscr{P}}^{*}\right|-\left|\widehat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}}^{M}\right|$.
Results: The quality $\widehat{\boldsymbol{y}}_{\ell_{H}, \mathscr{D}}^{*}$ decreases as the number of labels increases and seems to be the

Skeptic inference with Binary relevance

Goal: We investigate what happens when some labels are missing
Results: The precise model $(s=0$.) is not really affected by randomly missing labels, whereas our proposal becomes more cautious as the number of missing labels increases.
etting: Incorrectness Completness Q den redicted label s.t. $\widehat{y}_{i}=1$ or $\widehat{y}_{i}=0$).

$$
I C(\widehat{\mathbb{Y}}, \boldsymbol{y})=\frac{1}{|Q|} \sum_{\hat{y}_{i} \in Q} 1
$$

Missing labels pick at random a percentage of $\{20,40,60,80\}$

(6) Conclusion and Perspectives-

Works done since submission of ISIPTA paper:
\& We provide efficient procedures to solve the maximality criterion under Hamming loss and generic $\hat{y}_{\ell_{H}, \mathscr{P}_{B R}}^{\Gamma_{\text {min }}} \rightleftarrows \hat{y}_{\ell_{H}, \mathscr{P}_{B R}}^{\Gamma_{\text {max }}}$ probability sets
\% When considering sets of distributions and cautious inferences, it is not sufficient to consider marginal probabilities to get exact set-valued predictions, as opposed to the case of precise distributions.
\circledast We provide new implications (an implication $A \rightarrow B$ means that $A \subset B$) for the different decision criteria, namely Maximality, E-admissibility, $\boldsymbol{\Gamma}$-minimax, $\boldsymbol{\Gamma}$-minimin and $\mathbf{I n t e r v a l}$ Dominance when we use the restricted probability set $\mathscr{P}_{B R}$ and the Hamming loss ℓ_{H} (see Fig.2)
$\hat{\mathbb{Y}}_{\ell_{H}, \mathscr{P}_{B}}^{I D}$
What remains to finish (or in progress)
\mathbf{x} Compare our proposal against those rejecting and abstaining approaches
Appendix 1 - Example - Imprecise probabilistic tree and lower expected loss
Inference in binary trees [2]: For computing the infimum expectation given an
$\underline{E}_{\mathbf{Y}}\left[\ell_{H}\left(\cdot, \bar{a}_{\mathcal{I}}\right)\right]=\mathbb{E}_{Y_{1}}\left[\underline{E}_{Y_{2}}\left[\ldots \mathbb{E}_{Y_{m}}\left[\ell_{H}\left(\cdot, \bar{a}_{\mathcal{I}}\right) \mid Y_{\mathcal{I}_{[m-1]}}\right] \ldots\right] \mid\right]$.

Proposition 4 For a given set I

\qquad $\inf _{P \in \mathscr{P}} \sum_{i \in \mathcal{I}} P\left(Y_{i}=a_{i}\right)=\underline{\mathbb{E}}\left[\ell_{H}^{*}\left(\overline{\boldsymbol{a}}_{\mathcal{I}}, \cdot\right)\right]$

