Multi-label Chaining using Naive Credal Classifier

16th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty

CARRANZA-ALARCON Yonatan-Carlos

Ph.D. in Computer Science

DESTERCKE Sébastien

Ph.D. in Computer Science

21 to 24 Sept. 2021

- Multi-label classification problem
- Multi-label chaining with imprecise probabilities
 - Precise Probabilistic Chaining
 - Imprecise Probabilistic Chaining
 - + Imprecise Probabilistic Chaining using NCC model
- Experiments
- Conclusions

Multi-label classification problem

The goal of multi-label problem :

Given a training data : $\mathscr{D} = \{ \mathbf{x}^i, \mathbf{y}^i \}_{i=0}^N \subseteq \mathbb{R}^p \times \mathscr{Y}$

where : $\mathscr{Y} = \{0, 1\}^m, |\mathscr{Y}| = 2^m$

Learning a multi-label classification rule : $\varphi : \mathbb{R}^{p} \to \mathscr{Y}$

12th International Symposium on Imprecise Probabilities Theories and Applications

Recherche

Multi-label classification problem

Why imprecise multi-label chaining?

- X Label-wise decomposition ignores the label dependencies.
- X Working with full probabilistic tree means exploring an exponential number of branches.

- X Chaining heuristic introduce potential strong biases.
- X No research on making cautious inferences in such chaining.
- ♂ Our contribution :
 - We propose new strategies to extend the chaining multi-label problem to the imprecise probabilistic setting.
 - ✓ We propose efficient procedures for NCC model.

- Multi-label classification problem
- Multi-label chaining with imprecise probabilities
 - Precise Probabilistic Chaining
 - Imprecise Probabilistic Chaining
 - + Imprecise Probabilistic Chaining using NCC model
- Experiments
- Conclusions

Basic notations

Let us denote the probability of the label Y_j conditioned on previous labels $P_{\mathbf{x}^*}^{[j-1]}(Y_j=1) := P(Y_j=1|Y_{\mathbf{x}^{j-1}}=\widehat{\mathbf{y}}_{\mathbf{x}^{j-1}}, X=\mathbf{x}),$ (1)

where \mathscr{I}_{*}^{j-1} are indices of the *j* first predicted labels separated into

- 1. Indices of labels predicted as relevant : $\mathscr{I}_{\mathscr{R}}^{j}$
- 2. Indices of labels predicted as irrelevant : \mathcal{I}_{g}^{j}
- 3. Indices of abstained labels : $\mathcal{I}_{\mathcal{A}}^{j}$

Example (Predict the 5ith relevant label $Y_5 = 1$)

Given the sets of indices of 4-first predicted labels: $\mathscr{I}_{\mathscr{R}}^{4} = \{2\}, \mathscr{I}_{\mathscr{I}}^{4} = \{1,4\}, \mathscr{I}_{\mathscr{A}}^{4} = \{3\}.$ $P_{\mathbf{x}^{*}}^{[4]}(Y_{5}=1) := P(Y_{5}=1|Y_{\mathcal{I}_{\mathscr{A}}^{4}}=1, Y_{\mathcal{I}_{\mathscr{A}}^{4}}=0, Y_{\mathcal{I}_{\mathscr{A}}^{4}}=*, X=\mathbf{x})$ $= P(Y_{5}=1|Y_{1}=0, Y_{2}=1, Y_{3}=*, Y_{4}=0, X=\mathbf{x})$

Precise Probabilistic Chaining

READ et al. 2011]

• Learning a binary classifier at each step of the chaining :

$$\varphi_j: \mathbb{R}^p \times \{0,1\}^{j-1} \to \{0,1\}$$

2 Decision step under a binary classifier $\ell(y_j, \hat{y}_j) \rightarrow$

"Optimal" decision :
$$\varphi_j := \widehat{y}_j = \begin{cases} 1 & P_{\boldsymbol{x}^*}^{[j-1]}(Y_j = 1) \ge 0.5 \\ 0 & P_{\boldsymbol{x}^*}^{[j-1]}(Y_j = 1) < 0.5 \end{cases}$$

An example of multi-label chaining

FIGURE - Precise multi-label chaining with two labors.

Imprecise Probabilistic Chaining

Learning a multi-label chaining using imprecise probabilities (IP)

• Learning an imprecise classifier model at each step of the chaining :

$$[\boldsymbol{P}_{\boldsymbol{x}^*}^{[j-1]}]: \mathbb{R}^p \times \{0,1\}^{j \le m} \to [\underline{\boldsymbol{P}}_{\boldsymbol{x}^*}^{[j-1]}, \overline{\boldsymbol{P}}_{\boldsymbol{x}^*}^{[j-1]}]$$

Ø Making a cautious decision

$$\widehat{y}_{j} = \begin{cases} 1 & \text{if } \underline{P}_{\boldsymbol{x}^{*}}^{[j-1]}(Y_{j} = 1) > 0.5, \\ 0 & \text{if } \overline{P}_{\boldsymbol{x}^{*}}^{[j-1]}(Y_{j} = 1) < 0.5, \\ * & \text{if } 0.5 \in [\underline{P}_{\boldsymbol{x}^{*}}^{[j-1]}(Y_{j} = 1), \overline{P}_{\boldsymbol{x}^{*}}^{[j-1]}(Y_{j} = 1)], \end{cases}$$

 $[P_{u*}^{[1]}](y_2 = *|\hat{y}_1 = 0$

 $[\mathcal{P}_{v^*}^{[1]}](y_{2}=1|\bar{y}_{1}=0)$

• (0,0)

→● (0,*)

(0.1)

An example of imprecise chaining

FIGURE – An example of multi-label chaining using IP.

How to get $[\underline{P}_{x^*}^{[j-1]}, \overline{P}_{x^*}^{[j-1]}]$? Strategy **1** : Imprecise branching

Considering all possible branching in the chaining as soon as there is an abstained label.

$$\frac{P_{\mathbf{x}^{*}}^{[j-1]}(Y_{j}=1) = \min_{\mathbf{y} \in \{0,1\}^{|\mathcal{I}_{\mathcal{A}}^{j-1}|}} \underline{P}_{\mathbf{x}^{*}}(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{R}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0, Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=\mathbf{y}),}{\overline{P}_{\mathbf{x}^{*}}^{[j-1]}(Y_{j}=1) = \max_{\mathbf{y} \in \{0,1\}^{|\mathcal{I}_{\mathcal{A}}^{j-1}|}} \overline{P}_{\mathbf{x}^{*}}(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{R}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=\mathbf{y}).}$$
(IB)

Example :

Computing the probability of the label $Y_5 = 1$ conditioned on previous labels

$$\{\widehat{Y}_1 = 0, \widehat{Y}_2 = *, \widehat{Y}_3 = 1, \widehat{Y}_4 = *\}$$

$$[P_{x^*}^{I}, \overline{P}_{x^+}^{I}]$$

$$(0, 0, 1, 0, 1) [0.63, 0.85]$$

$$(1, 0, 0, 1, 1, 1) [0.64, 0.72]$$

$$(1, 0, 1, 1, 1) [0.53, 0.59]$$

$$(1, 0, 1, 1, 1, 1) [0.73, 0.80]$$

Strategy **2** : Marginalization

Ignore unsure predictions chaining in the interests of not propagating imprecision in the tree.

$$\frac{\mathcal{P}_{\mathbf{x}^{*}}^{[j-1]}(Y_{j}=1) = \underline{P}_{\mathbf{x}^{*}}(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0, Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=\{0,1\}^{|\mathcal{J}_{\mathcal{A}}^{j-1}|}), \\
= \min_{P \in \mathscr{P}^{*}} P_{\mathbf{x}^{*}}'(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0), \\
\overline{P}_{\mathbf{x}^{*}}^{[j-1]}(Y_{j}=1) = \overline{P}_{\mathbf{x}^{*}}(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0, Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=\{0,1\}^{|\mathcal{J}_{\mathcal{A}}^{j-1}}|), \\
= \max_{P \in \mathscr{P}^{*}} P_{\mathbf{x}^{*}}'(Y_{j}=1|Y_{\mathcal{J}_{\mathcal{A}}^{j-1}}=1, Y_{\mathcal{J}_{\mathcal{J}}^{j-1}}=0).$$
(MAR)

where \mathscr{P}^* is the set of full joint probability distributions described by the imprecise probabilistic tree [DE COOMAN et al. 2008].

X The optimization problem can be tricky, since the probability space of \mathscr{P}^* is not the same as $P'_{\mathbf{x}^*}$.

heudiasyc

Imprecise Chaining with Naive Credal Classifier

The class-conditional probability bounds evaluated for $Y_j = 1$ ($Y_j = 0$ can be directly calculated using duality) can be calculated as follows

$$\underline{P}(Y_{j}=1|\mathbf{X}=\mathbf{x}^{*}, Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}}) = \left(1 + \frac{P(Y_{j}=0)\overline{P}_{0}(\mathbf{X}=\mathbf{x}^{*})\overline{P}_{0}(Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}})}{P(Y_{j}=1)\underline{P}_{1}(\mathbf{X}=\mathbf{x}^{*})\underline{P}_{1}(Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}})}\right)^{-1}$$
$$\overline{P}(Y_{j}=1|\mathbf{X}=\mathbf{x}^{*}, Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}}) = \left(1 + \frac{P(Y_{j}=0)\underline{P}_{0}(\mathbf{X}=\mathbf{x}^{*})\underline{P}_{0}(Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}})}{P(Y_{j}=1)\overline{P}_{1}(\mathbf{X}=\mathbf{x}^{*})\overline{P}_{1}(Y_{\mathscr{I}^{j-1}}=\widehat{\mathbf{y}}_{\mathscr{I}^{j-1}})}\right)^{-1}$$

where conditional upper probabilities of $[\underline{P}_1, \overline{P}_1]$ and $[\underline{P}_0, \overline{P}_0]$ are

$$\overline{P}_{a}(\mathbf{X}=\mathbf{x}^{*}):=\prod_{i=1}^{p}\overline{P}(X_{i}=x_{i}|Y_{j}=a) \text{ and } \overline{P}_{a}(\mathbf{Y}_{\mathcal{J}^{j-1}}=\mathbf{y}_{\mathcal{J}^{j-1}}):=\prod_{k=1}^{j-1}\overline{P}(Y_{k}=\widehat{y}_{k}|Y_{j}=a),$$

where $a \in \{0, 1\}$. \rightarrow use factorization properties at our advantage!

Strategy **0** : Imprecise branching (IB) with NCC

In a nutshell :

- 1. Finding bounds usually requires searching 2^{|Abstained|} values
- 2. Using the fact that

$$P_{a}(\mathbf{Y}_{\mathcal{J}^{j-1}}=\mathbf{y}_{\mathcal{J}^{j-1}}):=\prod_{k=1}^{j-1}P(Y_{k}=\widehat{y}_{k}|Y_{j}=a),$$

we can drastically reduce this search by optimizing the terms separately.

Proposition 1

The global time complexity of the IMPRECISE BRANCHING strategy in the worst-case is $\mathcal{O}(m^2)$ and in the best-case is $\mathcal{O}(m)$.

Strategy **1** : Marginalization (IB) with NCC

We recall that the conditional upper probability on the (j-1)th first labels is $\overline{P}_{\boldsymbol{x}^*}^{[j-1]}(Y_j = 1) = \max_{P \in \mathscr{P}_{Y_j|Y_{\mathscr{G}^{j-1}}}^*} P_{\boldsymbol{x}^*}(Y_j = 1|Y_{\mathscr{G}_{\mathscr{R}}^{j-1}} = 1, Y_{\mathscr{G}_{\mathscr{G}}^{j-1}} = 0, Y_{\mathscr{G}_{\mathscr{A}}^{j-1}} = \{0, 1\}^{|\mathscr{G}_{\mathscr{A}}^{j-1}|}).$

Thanks to NCC, the abstained labels can be removed of the conditioning

$$\overline{P}_{\boldsymbol{x}^*}^{[j-1]}(Y_j=1) = \max_{\boldsymbol{P} \in \mathscr{P}_{Y_j|Y_{\mathcal{Y}_p^{j-1}}, Y_{\mathcal{Y}_p^{j-1}}}} P_{\boldsymbol{x}^*}(Y_j=1|Y_{\mathcal{Y}_p^{j-1}}=1, Y_{\mathcal{Y}_p^{j-1}}=0).$$

Graphically, if we use the NCC model to compute P_{x^*} , the probabilistic chaining comes down to :

✓ The global time complexity of the MARGINALIZATION strategy is O(m).

13

- Multi-label classification problem
- Multi-label chaining with imprecise probabilities
 - Precise Probabilistic Chaining
 - Imprecise Probabilistic Chaining
 - + Imprecise Probabilistic Chaining using NCC model
- Experiments
- Conclusions

Dataset and experimental setting

Material/Imprecise Classifier/Metrics

IN The data set issued from MULAN repository.

#Features	#Labels	#Instances	#Cardinality	#Density	
72	6	593	1.90	0.31	
÷	÷	÷	÷	÷	
103	14	2417	4.23	0.30	
	#Features 72 : 103	#Features #Labels 72 6 103 14	#Features #Labels #Instances 72 6 593 103 14 2417	#Features #Labels #Instances #Cardinality 72 6 593 1.90 … … … … … 103 14 2417 4.23	

№ Naive credal classifier (NCC) [ZAFFALON 2002]

Metric evaluations : (*Q* denotes the set of predicted label s.t. $\hat{y}_i = 1$ or $\hat{y}_i = 0$)

$$SA(\widehat{y}, y) = \mathbb{1}_{(y \in \widehat{y})}$$
 and $CP(\widehat{y}, y) = \frac{|Q|}{m}$,

Missing labels

Features					Missing		
X ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	X_5	<i>Y</i> ₁	Y ₂	<i>Y</i> ₃
107.1	25	Blue	60	1	1	*	0
-50	10	Red	40	0	1	0	*
200.6	30	Blue	58	1	*	0	0

Imprecise Branching. Evolution of the set-accuracy (left) and the completeness (right) in average (%) for each level of imprecision (a curve for each one), with respect to the % of missingness.

- The precise model (with imprecision = 0.0) is not really affected by randomly missing labels.
- However, our proposal provide some level of protection as the number of missing labels increases, although it requires sometime a high amount of imprecision to get the ground-truth solution within the set-valued prediction.

- Multi-label classification problem
- Multi-label chaining with imprecise probabilities
 - Precise Probabilistic Chaining
 - Imprecise Probabilistic Chaining
 - + Imprecise Probabilistic Chaining using NCC model
- Experiments
- Conclusions

Conclusions and Perspective

- Works done in this paper :
 - We propose two new strategies (IB and MAR) to adapt the chaining multi-label problem to the case of handling imprecise probability estimates.
 - We propose efficient procedures to solve such strategies by using the NCC model.
- What remains to do
 - How to come up with general but efficient optimisation methods to solve the strategies IB and MAR
 - Investigating the performance of our proposed strategies on other imprecise classifier.

References

ZAFFALON, Marco (2002). "The naive credal classifier". In : Journal of statistical planning and inference 105.1, p. 5-21.

DE COOMAN, Gert et Filip HERMANS (2008). "Imprecise probability trees : Bridging two theories of imprecise probability". In : Artificial Intelligence 172.11, p. 1400-1427.

READ, Jesse et al. (2011). "Classifier chains for multi-label classification". In : Machine learning 85.3, p. 333.

