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Overview
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Outline of supervised learning problem.

Historical data (training data)
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New
Observation
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Figure: Learn a recruitment and selection process model.
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Supervised learning

Any learning process is based on knowledge acquisition, be it implicit,
explicit, or both. That is how it happens in humans and not too differently
in computers.

Computers focuses on a specific and particular task, in which it learns to
generalize repetitive and similar patterns of a well-framed and well-
specific experiment, e.g. classification of images.

Learn a model that minimizes the risk of making a wrong decision. J
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Mathematical formulation

Let 2 = {(x;,y)li = 1,...,N} C 2P x K be a training data set generated
from an unknown joint probability distribution P

m Aresponse variable Y (also called output, target, outcome)

m A vector of p predictors x (also called inputs, features, attributes,
explanatory variables)

The goal is to build a predictive model ¢ : 2~ — ¢ that minimizes the risk
of making a wrong decision by computing

R(2) = Exxr [((Y. )] = / 0y, () dB(x. y), )

X XA

expected value of a specified loss ¢(-,-) : # x # — R penalizing every
wrong decision.

X Equation (1) is however impossible to compute since P is unknown !! ]
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Mathematical formulation

Let 7 = {(x;,yi)li = 1,...,N} C 2P x K be a training data set generated
from an unknown joint probability distribution P

m Aresponse variable Y (also called output, target, outcome)

m A vector of p predictors x (also called inputs, features, attributes,
explanatory variables)

In practice we use the empirical risk minimization (ERM) principle as follows

N
#(0) = 1 3 i o). &
i=1

N— oo

Note that if we have too much of training observations: Z(¢) — R(p) J

Objective

Learn an ¢ “optimal” model that minimizes Equation (1).
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Recommended readings

m “An Introduction to Statistical Learning” (ISLR): emphasis on basic
principles and application, no mathematical details. Available at
https://www.statlearning.com/.

m “The Elements of Statistical Learning” (ESL): more mathematically
advanced and theoretical. Availableathttp://statweb.stanfor
edu/~tibs/ElemStatLearn

Gareth James.
Daniela Witten
Trevor Hastie.
Robert Tibshirani

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction

with Applicatons iR

Q springer
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Overview

Supervised classification
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Binary classification

Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.

w8 g

»
w PN WW

9
w e

Figure: Dogs and Cats
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Binary classification

Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.
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Figure: Dogs and Cats Figure: New observation

What class does the new observation belongs to?
It is the one that has the highest probability (or score).
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Binary classification

Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.
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Figure: Dogs and Cats Figure: New observation
Let X be the new observation

P(X =Dog) =09 and P(X = Cat)=0.1
Dog - Cat (Dog is preferred to Cat)
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Outline of classification problem

Given the training data Z = {x;,y;}" o C RP x {mq, ..., me}:
Step @ Learning a classification rule: ¢ : X — K.
Step ® Making decision on a new instance @(x),x €

Step @ Step ®
Statistical Learning Inference or
Population Model Prediction

Classical
classification

Complete pre-order

X1

Figure: Supervised learning in a precise approach.
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Mathematical formulation - Classification

Let 2 = {(x;,yi)|i=1,...,N} C 2P x K be a training dataset

R(p) = argmin Exxy [¢(Y, ©))] (2)
ek

Under 1/0 loss function £/1, minimizing R is equivalent to

P(x*|D) = argmax P(Y = m|X = x*), (3)
m €IC

where the last equation; (1) is also known as Bayes classifier and (2) predicts
the class y* = ¢(x|2) the most probable.
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Supervised classification
[ Je]

Mathematical formulation - Classification
Let 2 = {(x;,yi)|i=1,...,N} C 2P x K be a training dataset

R(p) = argmin Exy [((Y, ¢))] (2)
e
Under 1/0 loss function £y,1, minimizing R is equivalent to
P(x*|D) = argmax P(Y = m|X = x*), (3)
m €K

where the last equation; (1) is also known as Bayes classifier and (2) predicts
the class y* = ¢(x|2) the most probable.

In practice

Step @ Learning the conditional probability distribution Py/,.
Step ® Predicting the ‘optimal” label amongst K = { my, ..., mx }:
Mi = My = weee 2= 14, <—=> P(y = mj, [x) > ... > P(Y = m,|X)

1= Pick out the most preferable label s,
<= maximal probability plausible P(y = m; |x)
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Classical classification methods
Gaussian Discriminant Analysis
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Assumptions: Conditional probability Pxjy—,, ~ N (uk, L), Vmg
Learning P: Maximum likelihood estimation or Bayesian inference.

Discriminant analysis model

| Assumptions (Vm € K)

| Parametric space (Vmy € K)

Parametric Gaussian conditional distribution Py y_,,

Linear Discriminant [3, §4.3]
Quadratic Discriminant [3, §4.3]
Naive Discriminant [3, §6.63]
Euclidean Discriminant [6]

Homoscedasticity: ¥, = X
Heteroscedasticity: ¥, = ¥y

Feature independence: ¥, = a'kTH
Unit-variance feature indep.: &, =1

O = {ewlem = (Trﬂu(azwuw)}
© = {Om|Om = (Tme» T 1im )}
O = {0"&'9"% = (Trmk7gk7#mk)}
O = {arﬂklam = (ﬂﬂw UW)}
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Classical classification methods
Gaussian Discriminant Analysis

Assumptions: Conditional probability Pyjy—,, ~ N (i, ), Vg
Learning P: Maximum likelihood estimation or Bayesian inference.

LDA

EDA NDA
Figure: Gaussian discriminant models
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Classical classification methods

Logistic regression

Assumptions:

If Y={0,1} (binary classification) so Py 5 ~ Ber(1:(5x)), where

Ty eBTX

In case of multi-class classification, Py petq ~ Cat(Buy, - - -, Bumy)-
oBnx

YLge Y e

Learning P: Maximum likelihood estimation or Bayesian inference

(but both using approximative methods to get optimal value of
parameter 5,

P(Y=m|X =X, By,) =

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 14 /48
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Classical classification methods
(Multi-class) Multinomial Logistic regression

Decision surface of LogisticRegression (multinomial)

Why it is linear?
- All points in the boundary must satisfy: {x : ¢¥(85x) = ¥(8{x)}

(B —B{)x=0
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Classical classification methods
K-nearest neighbors algorithm

Let 2 = {(x;,y;)|i = 1,...,N} dataset and a neighbourhood Ni(-) of
K neighbors.

1
(x) = arg max X Z Iy——y,

yex
X,'ENK(X)
® -
o
>
e | &
T
(}l -
T T T T T
1 2 3 4 5 6
X
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Classical classification methods
K-nearest neighbors algorithm

Let 2 = {(x;,y;)|i = 1,...,N} dataset and a neighbourhood Ni(-) of

K neighbors. 1
P(x) = arg;g:azfx X Z I——y
X,'ENK(X)

Height in feet
o

20 30 40 Age inyears
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Classical classification methods
K-nearest neighbors algorithm

Let 2 = {(x;,y;)|i = 1,...,N} dataset and a neighbourhood Ni(-) of
K neighbors. 1
(x) = arg max X Z Iy——y,

ex
Y X,'ENK(X)

KNN: K=1 KNN: K=100
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

Prediction the salary in millions = Y

Years,< 4.5
t ° .
g .
. .
o . .
o Heg® ] D)
@ "2. :
2 ] =
T
g tez fL
ST .
. M .
g 180 . .
o g8t
8 gecl*? . .
.
.
Hits </117.5
5.11 o e
T T T T
5 10 15 20
6.00 6.74 Years

Low salary (blue, Green)
High salary (orange, red)
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?

o o

0 o

00 02 04 06 08 1.0 00 02 04 06 08 1.0
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Classical classification methods
Tree-based models (Random Forest, Bagging, .

)

How does the algorithm work?

08

04
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?

[e]e]e}

o ] o e
°® 5
= @ o 2
S 3 S
P 6 $
o | o | 24
3 3 3
] ] 8
< S pa
S S
%
% g
o &
s 7 s
o g4
g4 3
T T T T T T T
0.0 02 0.4 0.6 0.8 10 0.0

T T T T T T
00 02 04 06 08 10
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?

Explainability of ML
000

o o | ; o

x2

00
L
00

T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?

e N ° N °

T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

X Tree-based models are not always good !!
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)
v Bagging or Random Forest method

Original Tree bat bs2

[e]e]e}

. ] v/ Weighted prediction
a : A v Non-linear decision boundaries
- - - .

b=o b=10 batt

x1<0ms x1<0s88 x1<osss

1o o
L} E °
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Classical classification methods
Support Vector Machine - Classification

The margin of H is the smallest distance between H and a vector x;

(4)

T _
M = arg m'in d(Xi, H) = arg m.in W
i I

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 21 /48
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Classical classification methods
Support Vector Machine - Classification

The Optimal Separating Hyperplane is the hyperplane with the largest
margin. It can be found by solving the optimization problem:

M <= argmin 7||5]1 @

subjectto yi(B'xi+Bo)>1—¢,i=1,....,n (5

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 21 /48
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Classical classification methods
Support Vector Machine - Classification

The Optimal Separating Hyperplane is the hyperplane with the largest
margin. It can be found by solving the optimization problem:

1
M — argmﬁin illﬂ\lz (4)

SUbjeCttO yj(ﬁTX,'—F,BO)Zl—&,’,/‘:l,...,n (5)
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Others: XGBoost, Neural Network, Deep-Learning....

XGBoost
Xy
Tree | Tree 2 Tree n
LN Ly - g

b EZT fetx)

Result
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Others: XGBoost, Neural Network, Deep-Learning....

XGBoost Neural Network
o Oy
Tree | Tree 2 Tree n
LN Ly - g
==t fi(x)
| !
Result pisetaxn —p( Y
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Others: XGBoost, Neural Network, Deep-Learning....

XGBoost Neural Network
Xy
Tree | Tree 2 Tree n
N Ly - iy
9=Zi=1 fi(®)
| ‘
Result [—_

Deep-Convolution neural network

Conv. Module #1 Conv. Module #2 Classification

convad maxpool convad maxpool fully fully
Input +RelLU +RelLU connected  connected
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Example of classification

Let us do Machine Learning
Code source - [Link]
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https://colab.research.google.com/drive/1RF98QvYOtaPYLiMyDB6xyrYmzVpYqZP3#scrollTo=0JOafONh8tdk
https://drive.google.com/drive/folders/1-6wGRlV_MrcfTYuPBJ617ezklYKh-loH?usp=sharing

Supervised learning Supervised classification Linear regression NLP and Others B-V tradeoff Explainability of ML
00000 0000000000000 00 @000000 00000000 [e]e) 000

Overview

Linear regression
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Mathematical formulation - Regression

Let 2 = {(x;,y)|li=1,...,N} C 2P x K be a training dataset

R(p) = argmin Exxy [¢(Y, ©))] (6)
pEF

Under squared loss function, minimizing R is equivalent to

() = argmin / (v — 9 (0))2dP(x, ), %
pEF XX
p(°) = B(Y]X = x°), ®)

where the last equation amounts to saying that
m Prediction may be interpreted as an average value.

m Again the conditional distribution Py x is unknown.

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 25/48
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Classical regression methods
K-nearest neighbors algorithm

Let 2 = {(x;,y;)|i = 1,...,N} dataset and a neighbourhood Ni(-) of
K neighbors.

@(x) = Ave{y; : x; € Nx(x)} = Z Yi

X,ENK (x)

KNeighborsRegressor (k = 5, weights = ‘uniform’)

— prediction
o5 data

-0.5
Lol T T T T T
o 1 2 3 4 5
KNeighborsRegressor (k = 5, weights = 'distance')
10
—— prediction
05 data
0.0
—0.5

] 1 2 3
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Classical regression methods
Linear regression

Assumptions: Expectation value can be written as a linear equation 3'x.

p
o) =Y =80+ Bx+e, €~N(0,0%) 9)
=1
aj/_/
E(Y|X=x*)

Let 2 = {(x,y)|i = 1,...,N} a
dataset. The most popular estima-
tion method for 8 parameters is least
squares, in which we minimize the
sum of squared residuals (differences
between y; and ¢(x;)). And where the
optimal values of 3 is

B=XX)"XTy

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 27 /48
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Classical regression methods
Linear regression

Assumptions: Expectation value can be written as a linear equation 3'x.

p
o) =Y =80+ Bx+e, €~N(0,0%) 9)
=1
aj/_/
E(Y|X=x*)

Reported happiness as a function of income

y=02-071x

Happiness score (0 to 10)

income (x$10,000)

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 27 /48
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Classical regression methods
Regularized Linear regression

In order to avoid the overfitting and other issues, an regularized
component is added:

R*(o(x)) = argen;_in E [(Y — <p(x))2 ’X = X] + T(p) (10)

Ridge regression
Lasso regression

]
]
m Elastic net
m Principal component regression
]

Partial least squares regression

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 28 /48
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Classical regression methods
Other regression methods

The base classification models used previously can also be adapted
to the regression problem:

Tree-based model

Random Forest, Bagging, Boosting, ...

Support Vector Machine for regression

XGboost for regression

Ul N NN -

Deep-learning models

YC Carranza-Alarcén, Ph.D. « Machine Learning « October 14, 2021 29/48
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Example of regression

Let us do Machine Learning
Code source - [Link]
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Overview

NLP and Other advanced supervised methods
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Multi-label classification problem

1= The goal of multi-label problem:
Given a training data: 2 = {x",y'}¥ | CRP x &

where: # = {0,1}", |#|=2"
Learning a multi-label classification rule: ¢ : RP — &

Classical classification Multi-label classification
=] == o asoit, .} H={ wset, . }

fi& CrossValidated 8 Cross\alidated
4 o 41 Wnattypeof QQPlotis this? 4 o0 11 Wnattype XQOPISTTs thi

wios  anwers  vews | mahematoatstatstios [ ‘methematiasttiotcs | | au-pot ] [ Not-relevant Iabel%
Relevant labels
0 o 4 Howtofindanexpression of the variance of a Poisson-Lognormal 0 0o 4 Howtofindanexpression of thewariance of a Poisson-Lognormal
", distribution? . distribution?
vvvvvv o " varance | posson- logpormal
Single label
o [ 2 | 135 graph classification task=multi label? 0 | 2 | 135 graph classification task - muli label? Multiple label
¢ | machine-eaming | cassficaton 1
32 | 7 | a4k Isthere an accepted definition for the median of a sample on the plane, or 32 | 7 | ax Isthereanaccepted definition for the median of a sample on the plane, or
higher ordered spaces? oo eses | e higher ordered spaces?

ss | spatal | medan
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Label-wise ranking problem

1= The goal of label ranking problem:

Given a training data: 2 = {x;, Y;}'.y C RP x\(¥)
Learning a complete ranking rule: ¢ : R? — A(.¥)
2
XX | y
107.1 Blue my - mz o My > g

—50 Red my > mz > o M4
200  Green | my = mg - mz = m

7 D D3 Dy
X1 X3 Y X1 X3 Y X1 X3 Y X1 X, Y
107.1  Blue 1 107.1  Blue 3 107.1  Blue 2 107.1  Blue 4
—50 Red 3 —50 Red 1 —50 Red 2 —-50 Red 4
200 Green | 1 200 Green | 4 200 Green | 3 200 Green | 2

Figure: Label-wise decomposition
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Handwritten ZIP code.

000e0000 [e]e] [e]e]e}

Problem: Identify the numbers in a handwritten ZIP code, from a

digitized image

The task is to recognize, from the
matrix of pixel intensities, the
digit in each image (0,1,...,9)
quickly and accurately.

We can use any base classifier
model

m Support Vector Machine
m Deep-learning models
m Others (logistic, ...)
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Recognize the expression on a face.

Problem: Identify the expression on a face.

joy surprise sadness

=

disgust

f.
g

Figure: Expression recognition
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How can we solve these problems?

A simple approach may be:

1. to save all pixel values of images in a record, in which their
values is ranging in intensity from O to 255.

2. to use an unsupervised method to reduce the dimensionality of
X input space, and then, to apply a base classifier method.

Projection in a 5D Logistic o
d
subspace (LDA) - Regression W decision
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Natural Language Processing

100100111010110
110101001000101

010110101010010
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Natural Language Processing

100100111010110

110101001000101

010110101010010
.

Very intuitive platform, I'll definitely recommend it. .
The chat support is excellent, really fast in their replies 1. HOW can we WOI’k W|th
and very helpful. unstructured data?
Usability Positive Customer Support 2. Are there mathematlcs tOOlS?
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Representation as vector R

Given three english texts

Bats can see via ;
The elephant sneezed . Wondering, she opened
at the sight of potatoes. ecggltos?;ﬂgghgsze:lhe the door to the studio.

IJIJIIIIJIIJIIIIJII

;& R &
S TS &S
<

NI R
N
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Representation as vector R - BagWords

Given three english texts

Bats can see via q
The elephant sneezed " Wondering, she opened
at the sight of potatoes. edtlgltosci;tr:?gh::;he the door to the studio.

NS s Q& 2 & X Ry & R A
TG TG FFFSSE T
% S &5 S
N &
N
&

Bats can see via
echolocation. See the
bat sight sneeze!

Lefafofof]ofofofofefofrfrfof1]o]r]o]
> & @\@e\\&-\\ia@‘ é\&é\@@@ & ‘3&;}@&@&,@“ & ® &e\\@
Q
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Representation as vector R - Term frequency

Given three english texts

Bats can see via ;
The elephant sneezed A Wondering, she opened
at the sight of potatoes. ecgglto:i;ﬂ?ghz:;et,he the door to the studio.

Wondering, she opened
the door to the studio.

|o|0|0|0.3|0|0|0|0.3|o|o|0.3|0|0|0.4|0|0|0|0.3|

T ST TS LS E S
§ N B\
\0\‘8 N &
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Representation as vector R - One-hot encoded

Given three english texts

The elephant sneezed Bats can see via Wondering, she opened

atthe sight of potatoes. ecggltos(i;tr:(t)rs]ﬁz:fetlhe the door to the studio.

The elephant sneezed
at the sight of potatoes.

Lifofofofofufifofrfofofrfrfofr]ofo]o]
S &S

> & $ > &

T ST TS &
& & RN
SR A
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Representation as vector R

Given three english texts

Bats can see via ;
The elephant sneezed " Wondering, she opened
at the sight of potatoes. ed;,gﬂ?;ﬂ??.}zzzeeﬁhe the door to the studio.

> A .S S S O R YR O QR D

OIS @'b\\“ & & 9 QQ'§ & ;Q‘_}b’\\&@@» RN A\@gz,
Q\Q" é‘& ] S 9 W
B

Word embedding is another powerful way to work with text.
In an euclidian space, we can use any base classifier model.
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Overview

Bias-variance tradeoff
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Bias-variance tradeoff

How accurate can we be predicting? 5
E [ g0V |x =x] = varlplX =x+ (BBl ¢ | + 2
Variance of f; Bias of & Irreducible error

Reducible error

] m The more complex the model
L is, the more variance the
_ model has.
o | ' Irreducible )
" error m Inversely, The more simple
o the model is, the more bias
the model has.

Flexibilit
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Overview

Interpretability and explainability of ML methods
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Interpretability/flexibility trade-off

S _| Subset Selection
T Lasso
Least Squares
=
) Generalized Additive Models
© Trees
<
[0}
£
Random forests
. Support Vector Machines
S Neural networks

T T
Low High

Flexibility
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Explainability ML using SHapley Additive exPlanations

base value f(x)
-2.036220 -0.187151 1.661918 3.510987 5.360056 6.721336125

1 was sold out ) was overcome ) s that it can toy with our emotions . it that i was rel

i went and saw this movie last night after being coaxed to by a few friends of mine .i"ll

admit that i was reluctant to see it because from what i knew of ashton kutcher he was only
able to do comedy . i was wrong . kutcher played the character of jake fischer very well , and
kevin costner played ben randall with such professionalism .

American_egret crane little_blue_heron flamingo
]
-
L] ’F
speedboat fountain lifeboat snowplow

~0.0002 ~0.0001 0.0000 0.0001 0.0002

SHAP value
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