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Outline of supervised learning problem.

Decisions

Historical data (training data)

New 
Observation

Input (1) Learning

(2) Prediction

Output

Figure: Learn a recruitment and selection process model.
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Supervised learning

Any learning process is based on knowledge acquisition, be it implicit,
explicit, or both. That is how it happens in humans and not too differently
in computers.

Computers focuses on a specific and particular task, in which it learns to
generalize repetitive and similar patterns of a well-framed and well-
specific experiment, e.g. classification of images.

Objective
Learn a model that minimizes the risk of making a wrong decision.
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Mathematical formulation
Let D = {(xi, yi)|i = 1, . . . ,N} ⊆ X p × K be a training data set generated
from an unknown joint probability distribution P

A response variable Y (also called output, target, outcome)

A vector of p predictors x (also called inputs, features, attributes,
explanatory variables)

The goal is to build a predictive model ϕ : X → K that minimizes the risk
of making a wrong decision by computing

R(ϕ) = EX×Y [`(Y , ϕ))] =

∫
X×K

`(y, ϕ(x))dP(x, y), (1)

expected value of a specified loss `(·, ·) : K × K → R penalizing every
wrong decision.

7 Equation (1) is however impossible to compute since P is unknown !!
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Mathematical formulation
Let D = {(xi, yi)|i = 1, . . . ,N} ⊆ X p × K be a training data set generated
from an unknown joint probability distribution P

A response variable Y (also called output, target, outcome)

A vector of p predictors x (also called inputs, features, attributes,
explanatory variables)

In practice we use the empirical risk minimization (ERM) principle as follows

R(ϕ) =
1
N

N∑
i=1

`(yi, ϕ(xi)). (1)

Note that if we have too much of training observations: R(ϕ) −→
N→∞

R(ϕ)

Objective
Learn an ϕ “optimal” model that minimizes Equation (1).
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Recommended readings

“An Introduction to Statistical Learning" (ISLR): emphasis on basic
principles and application, no mathematical details. Available at
https://www.statlearning.com/.
“The Elements of Statistical Learning" (ESL): more mathematically
advanced and theoretical. Available athttp://statweb.stanford.
edu/~tibs/ElemStatLearn
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Binary classification

Example
Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.

Figure: Dogs and Cats
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Binary classification

Example
Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.

Figure: Dogs and Cats

New 
observation

Figure: New observation

What class does the new observation belongs to?
It is the one that has the highest probability (or score).
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Binary classification

Example
Let us consider a binary classification problem, in which we need
identify if the new observation is a Dog or a Cat.

Figure: Dogs and Cats

New 
observation

Figure: New observation
Let X be the new observation

P(X = Dog) = 0.9 and P(X = Cat) = 0.1
Dog � Cat (Dog is preferred to Cat)
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Outline of classification problem

Given the training data D = {xi, yi}Ni=0 ⊆ Rp × {ma, . . . ,me}:
Step Ê Learning a classification rule: ϕ : X → K.
Step Ë Making decision on a new instance ϕ̂(x), x ∈ T

Statistical
Population

D

T

Classical
classification

Inference or
Prediction

Step Ë

Learning
Model

Step Ê

(xi, yi)

(xi, ?)

Complete pre-order

ma mc . . . me ŷ=maPrecise model

P : X ×Θ→ K

→ →

Figure: Supervised learning in a precise approach.
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Mathematical formulation - Classification

Let D = {(xi, yi)|i = 1, . . . ,N} ⊆X p ×K be a training dataset

R(ϕ) = arg min
ϕ∈K

EX×Y [`(Y , ϕ))] (2)

Under 1/0 loss function `0/1, minimizing R is equivalent to

φ(x∗|D) := arg max
mk∈K

P(Y = mk|X = x∗), (3)

where the last equation; (1) is also known as Bayes classifier and (2) predicts
the class ŷ∗ = φ(x|D) the most probable.
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Mathematical formulation - Classification
Let D = {(xi, yi)|i = 1, . . . ,N} ⊆X p ×K be a training dataset

R(ϕ) = arg min
ϕ∈K

EX×Y [`(Y , ϕ))] (2)

Under 1/0 loss function `0/1, minimizing R is equivalent to
φ(x∗|D) := arg max

mk∈K
P(Y = mk|X = x∗), (3)

where the last equation; (1) is also known as Bayes classifier and (2) predicts
the class ŷ∗ = φ(x|D) the most probable.

In practice

Step Ê Learning the conditional probability distribution PY|x .

Step Ë Predicting the “optimal” label amongst K = { m1, ...,mK}:

miK � miK−1 � .... � mi1 ⇐⇒ P(y = miK |x) > .... > P(Y = mi1 |x)

+ Pick out the most preferable label miK
⇐⇒ maximal probability plausible P(y = miK |x)
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Classical classification methods
Gaussian Discriminant Analysis

Assumptions: Conditional probability PX|Y=mk ∼ N (µk,Σmk),∀mk
Learning P: Maximum likelihood estimation or Bayesian inference.

Discriminant analysis model Assumptions (∀mk ∈ K) Parametric space (∀mk ∈ K)
Parametric Gaussian conditional distribution PX|Y=mk

Linear Discriminant [3, §4.3] Homoscedasticity: Σmk = Σ Θ = {θmk |θmk = (πmk ,Σ, µmk)}
Quadratic Discriminant [3, §4.3] Heteroscedasticity: Σmk = Σk Θ = {θmk |θmk = (πmk ,Σk, µmk)}
Naive Discriminant [3, §6.63] Feature independence: Σmk = σTk I Θ = {θmk |θmk = (πmk , σk, µmk)}
Euclidean Discriminant [6] Unit-variance feature indep.: Σmk = I Θ = {θmk |θmk = (πmk , µmk)}
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Classical classification methods
Gaussian Discriminant Analysis
Assumptions: Conditional probability PX|Y=mk ∼ N (µk,Σmk),∀mk
Learning P: Maximum likelihood estimation or Bayesian inference.

Figure: Gaussian discriminant models
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Classical classification methods
Logistic regression

Assumptions:
If Y={0, 1} (binary classification) so PY=1|x,β ∼ Ber(ψ(βTx)), where

P(Y=1|X = x, β) := ψ(βTx) =
eβ

Tx

1+ eβTx

In case of multi-class classification, PY |x,beta ∼ Cat(βm1 , . . . , βmK ).

P(Y=mk|X = x, βmk) :=
eβ

T
mk
x∑K

l=1 e
βTml
x

Learning P: Maximum likelihood estimation or Bayesian inference
(but both using approximative methods to get optimal value of
parameter β∗
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Classical classification methods
(Multi-class) Multinomial Logistic regression

Why it is linear?
Ô All points in the boundary must satisfy: {x : ψ(βT0 x) = ψ(βT1 x)}

(βT0 − βT1 )x = 0
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Classical classification methods
K-nearest neighbors algorithm
Let D = {(xi, yi)|i = 1, . . . ,N} dataset and a neighbourhood Nk(·) of
K neighbors.

ψ(x) = arg max
y∈K

1
K

∑
xi∈NK(x)

Iy==yi
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)
Prediction the salary in millions = Y
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)

How does the algorithm work?
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)
7 Tree-based models are not always good !!
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Classical classification methods
Tree-based models (Random Forest, Bagging, ...)
3 Bagging or Random Forest method

3 Weighted prediction
3 Non-linear decision boundaries
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Classical classification methods
Support Vector Machine - Classification

The margin of H is the smallest distance between H and a vector xi

M = arg min
i
d(xi,H) = arg min

i

βT(x − x0)

||β||
(4)
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Classical classification methods
Support Vector Machine - Classification
The Optimal Separating Hyperplane is the hyperplane with the largest
margin. It can be found by solving the optimization problem:

M ⇐⇒ arg min
β

1
2
||β||2 (4)

subject to yi(βTxi + β0) ≥ 1− ξi, i = 1, . . . , n (5)
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Others: XGBoost, Neural Network, Deep-Learning....

XGBoost
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Others: XGBoost, Neural Network, Deep-Learning....

XGBoost Neural Network
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Others: XGBoost, Neural Network, Deep-Learning....
XGBoost Neural Network

Deep-Convolution neural network
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Example of classification

Let us do Machine Learning
Code source - [Link]
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Mathematical formulation - Regression

Let D = {(xi, yi)|i = 1, . . . ,N} ⊆X p ×K be a training dataset

R(ϕ) = arg min
ϕ∈F

EX×Y [`(Y , ϕ))] (6)

Under squared loss function, minimizing R is equivalent to

ϕ(·) := arg min
ϕ∈F

∫
X×Y

(y − ϕ(x))2dP(x, y), (7)

ϕ(x∗) := E(Y |X = x∗), (8)

where the last equation amounts to saying that

Prediction may be interpreted as an average value.

Again the conditional distribution PY|X is unknown.
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Classical regression methods
K-nearest neighbors algorithm
Let D = {(xi, yi)|i = 1, . . . ,N} dataset and a neighbourhood Nk(·) of
K neighbors.

ϕ(x) = Ave {yi : xi ∈ NK(x)} =
1
K

∑
xi∈NK(x)

yi

YC Carranza-Alarcón, Ph.D. · Machine Learning · October 14, 2021 26 / 48



Supervised learning Supervised classification Linear regression NLP and Others B-V tradeoff Explainability of ML Bibliography

Classical regression methods
Linear regression
Assumptions: Expectation value can be written as a linear equation βTx.

ϕ(x∗i ) := Yi := β0 +

p∑
j=1

β jxji︸ ︷︷ ︸
E(Y|X=x∗)

+ε, ε ∼ N (0, σ2) (9)

Let D = {(xi, yi)|i = 1, . . . ,N} a
dataset. The most popular estima-
tion method for β parameters is least
squares, in which we minimize the
sum of squared residuals (differences
between yi and ϕ(x∗i )). And where the
optimal values of β is

β = (XTX)−1XTy
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Classical regression methods
Regularized Linear regression

In order to avoid the overfitting and other issues, an regularized
component is added:

R∗(ϕ(x)) = arg min
ϕ∈F

E
[
(Y − ϕ(x))2

∣∣∣X = x
]

+ Υ(ϕ) (10)

Ridge regression
Lasso regression
Elastic net
Principal component regression
Partial least squares regression
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Classical regression methods
Other regression methods

The base classification models used previously can also be adapted
to the regression problem:

1. Tree-based model
2. Random Forest, Bagging, Boosting, ...
3. Support Vector Machine for regression
4. XGboost for regression
5. Deep-learning models
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Example of regression

Let us do Machine Learning
Code source - [Link]
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Multi-label classification problem
+ The goal of multi-label problem:

Given a training data: D = {xi, y i}Ni=0 ⊆ Rp × Y

where: Y = {0, 1}m, |Y | = 2m

Learning a multi-label classification rule: ϕ : Rp → Y

Classical classification Multi-label classification
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Label-wise ranking problem
+ The goal of label ranking problem:

Given a training data: D = {xi, Yi}Ni=0 ⊆ Rp×Λ(K )
Learning a complete ranking rule: ϕ : Rp → Λ(K )

D

X1 X3 Y
107.1 Blue m1 � m3 � m2 � m4
−50 Red m2 � m3 � m1 � m4
200 Green m1 � m4 � m3 � m2
. . . . . . . . .

D1

X1 X3 Y
107.1 Blue 1
−50 Red 3
200 Green 1
. . . . . . . . .

D2

X1 X2 Y
107.1 Blue 3
−50 Red 1
200 Green 4
. . . . . . . . .

D3

X1 X2 Y
107.1 Blue 2
−50 Red 2
200 Green 3
. . . . . . . . .

D4

X1 X2 Y
107.1 Blue 4
−50 Red 4
200 Green 2
. . . . . . . . .

Figure: Label-wise decomposition
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Handwritten ZIP code.

Problem: Identify the numbers in a handwritten ZIP code, from a
digitized image

The task is to recognize, from the
matrix of pixel intensities, the
digit in each image (0, 1, . . . , 9)
quickly and accurately.
We can use any base classifier
model

Support Vector Machine
Deep-learning models
Others (logistic, ...)

YC Carranza-Alarcón, Ph.D. · Machine Learning · October 14, 2021 34 / 48



Supervised learning Supervised classification Linear regression NLP and Others B-V tradeoff Explainability of ML Bibliography

Recognize the expression on a face.
Problem: Identify the expression on a face.

Figure: Expression recognition
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How can we solve these problems?

A simple approach may be:
1. to save all pixel values of images in a record, in which their
values is ranging in intensity from 0 to 255.

2. to use an unsupervised method to reduce the dimensionality of
X input space, and then, to apply a base classifier method.
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Natural Language Processing
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Natural Language Processing

1. How can we work with
unstructured data?

2. Are there mathematics tools?
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Representation as vector R
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Representation as vector R - BagWords
Given three english texts
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Representation as vector R - Term frequency
Given three english texts
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Representation as vector R - One-hot encoded
Given three english texts
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Representation as vector R

Given three english texts

Word embedding is another powerful way to work with text.
In an euclidian space, we can use any base classifier model.
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Bias-variance tradeoff
How accurate can we be predicting?

E
[
(y − ϕ̂(x))2

∣∣∣X = x
]

= Var[ϕ̂|X = x]︸ ︷︷ ︸
Variance of f̂k

+

E[ϕ̂]− ϕ︸ ︷︷ ︸
Bias of ϕ̂


2

︸ ︷︷ ︸
Reducible error

+ σ2︸︷︷︸
Irreducible error

The more complex the model
is, the more variance the
model has.
Inversely, The more simple
the model is, the more bias
the model has.
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Interpretability/flexibility trade-off
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Explainability ML using SHapley Additive exPlanations
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